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Abstract: The current chronic kidney disease epidemic, the major health issue in the rice 

paddy farming areas in Sri Lanka has been the subject of many scientific and political 

debates over the last decade. Although there is no agreement among scientists about the 

etiology of the disease, a majority of them has concluded that this is a toxic nephropathy. 

None of the hypotheses put forward so far could explain coherently the totality of clinical, 

biochemical, histopathological findings, and the unique geographical distribution of the 

disease and its appearance in the mid-1990s. A strong association between the 

consumption of hard water and the occurrence of this special kidney disease has been 

observed, but the relationship has not been explained consistently. Here, we have 

hypothesized the association of using glyphosate, the most widely used herbicide in the 

disease endemic area and its unique metal chelating properties. The possible role played by 

glyphosate-metal complexes in this epidemic has not been given any serious consideration 

by investigators for the last two decades. Furthermore, it may explain similar kidney 

disease epidemics observed in Andra Pradesh (India) and Central America.  

Although glyphosate alone does not cause an epidemic of chronic kidney disease,  
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it seems to have acquired the ability to destroy the renal tissues of thousands of farmers 

when it forms complexes with a localized geo environmental factor (hardness) and  

nephrotoxic metals.  

Keywords: chronic kidney disease of unknown etiology; glyphosate; hard water; 

nephrotoxic metals; arsenic  

 

1. Introduction 

1.1. Chronic Kidney Disease of Unknown Etiology (CKDu) in Sri Lanka 

Starting in the mid 1990s, a Chronic Kidney Disease of Unknown etiology (CKDu) was discovered 

among the rice paddy farmers in the North Central Province (NCP) of Sri Lanka [1]. Over the next two 

decades, the disease spread rapidly to the other farming areas. The age-standardized prevalence of the 

disease is estimated at 15% [2] affecting a total population of 400,000 patients with an estimated death 

toll of around 20,000 [3]. The unique feature of this CKDu is that its etiology does not include 

commonly known risk factors for CKD such as diabetes mellitus, hypertension and glomerular 

nephritis [4]. In 2009, the Sri Lankan Ministry of Health introduced criteria for case definition of 

CKDu [5]. These included: 

(1) No past history of, or current treatment for diabetes mellitus or chronic and/or severe 

 hypertension, snake bites, urological disease of known etiology or glomerulonephritis. 

(2) Normal glycosylated hemoglobin levels (HbA1C ˂ 6.5%). 

(3) Blood pressure ˂160/100 mmHg untreated or ˂140/90 mmHg on up to two  

 antihypertensive agents. 

The CKDu is a disease that progresses slowly [1]. Patients are asymptomatic during most of the 

course of the disease. Histopathological findings have shown tubular interstitial nephritis associated 

with mononuclear cell infiltration, glomerular sclerosis and tubular atrophy [6]. The disease is 

characterized by tubular proteinurea, usually alpha-1 and beta-2 microglobulinuria, and high urine 

Neutrophil Gelatinase-associated lipocalin (NGal) levels (>300 ng/mg creatinine) [7,8]. The observed 

geographical and socioeconomic disease patterns led to assumptions that environmental and 

occupational factors have an important role to play as the main causative agents [9,10]. 

Tubulointerstitial disease with negative immunofluorescence for IgG, IgM and complement-3 are more 

in favor of a toxic nephropathy [4], but commonly known nephrotoxins such as lead (Pb),  

non-steroidal anti-inflammatory drugs, aminoglycosides, aristolochic acid and mycotoxins are highly 

unlikely as a single cause of CKDu in Sri Lanka. Many victims of CKDu are not aware of being ill 

until the end stage and their only treatment options are peritoneal and hemodialysis and ultimately, 

kidney transplantation. 

A number of research groups, including the World Health Organization (WHO), have conducted 

research studies to determine the etiology of this unique type of CKD. There is some consensus that 

this is a multifactorial disease. The main factors include chronic exposure to arsenic (As) [1],  
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cadmium (Cd) [11] and pesticides [2,12]. Consumption of hard water, low water intake and exposure 

to high temperatures resulting in significant dehydration, are among the other factors. Whatever hypothesis 

that is propounded should be able to answer the questions as to why CKDu is confined to certain 

geographical areas of Sri Lanka and why there was no CKDu in Sri Lanka prior to the 1990s.  

1.2. CKDu and Ground Water Hardness 

Places with high ground water hardness and the geographical distribution of the CKDu in Sri Lanka 

are well correlated (Figure 1). Hardness of water is caused mainly due to the presence of the 

polyvalent metallic cations calcium (Ca), magnesium (Mg), strontium (Sr) and iron (Fe), together with 

carbonate, bicarbonate, sulphate and chloride anions [13]. The degree of hardness is classified as, soft, 

moderately hard, hard or very hard when the Ca and Mg content is 0–60 mg/L, 61–120 mg/L,  

121–180 mg/L and >181 mg/L, respectively [14]. Ground water in the CKDu endemic area is found to 

be either hard or very hard and contain Ca, Mg, Fe and Sr ions [15]. 

Figure 1. Geographical distribution of patients with CKDu and ground water hardness in  

Sri Lanka. Ground water hardness data- with the courtesy of Water Resources Board  

of Sri Lanka. 

 

A highly statistically significant positive correlation (p < 0.008) has already been revealed between 

the occurrence of CKDu in Sri Lanka and hard water consumption. Ninety six percent of the  

CKDu patients had consumed hard or very hard water for at least five years, from wells that receive 

their supply from shallow regolith aquifers [16]. Apart from that, the authors have made the following 

observations related to CKDu and the hardness of the drinking water: 
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(a) The number of villagers who complain that the ground water hardness in CKDu endemic 

area has increased steadily over the last two decades. 

(b) Certain shallow wells (2–5 m), which were previously been used for drinking purposes are 

now abandoned due to high hardness and bad taste.  

(c) There are a few natural springs located in the CKDu endemic area where water is not hard. 

People who consume water from these sources have been determined to be free from the 

disease. 

(d) Individuals who drink treated water from large water supply schemes (especially in the two 

cities of Anuradhapura and Polonnaruwa), while living in the same endemic areas,  

do not have the disease.  

(e) In the adjoining farming areas of the Northern Province of Sri Lanka, where the ground 

water hardness level is known to also be hard or very hard, there have not been any 

significant number of CKDu cases reported. 

Many scientists who have been involved in research related to CKDu have neglected the hard water 

factor, as there is no scientific evidence linking CKD to the consumption of hard water, or the presence 

of high Ca or high Mg levels in drinking water. Nevertheless, due to the strong association between 

hard water consumption and CKDu, certain researchers have attempted to link hard water with a 

number of other factors related to CKDu. Jayasumana et al. [1] have demonstrated that there is a link 

between hardness and arsenic toxicity. They have identified toxic levels of arsenic in urine,  

hair and nail samples of CKDu patients as well as in apparently healthy individuals living in the  

CKDu endemic region. They proposed that arsenic, derived mainly from tainted agrochemicals 

(chemical fertilizers and pesticides), when combined with calcium and/or magnesium in the ground 

water can ultimately damage the kidney tissues. Even though there is considerable evidence to suggest 

that the agricultural workers in the CKDu endemic areas are exposed to arsenic, the exact source and 

mode of entry of arsenic remains controversial. However, the totality of scientific evidence gathered so 

far has highlighted the fact that an unknown factor (Compound X) originating from agrochemicals, 

when combined with hardness/Ca/Mg can cause significant kidney damage; thus explaining many 

current observations including the unique geographical distribution of the disease.  

2. Compound X 

If we assume that the “Compound X” is derived from the agrochemicals and is easily bound to  

Ca/Mg/Sr/Fe to ultimately cause damage to the kidneys, then this hypothesis can explain the 

geographical distribution of CKDu as well as the occurrence of the disease only after the 1990s. 

Political changes instituted in 1977 in Sri Lanka, have lead to economic policies that allowed the 

importation and application of agrochemicals on a large scale, especially for paddy farming.  

The low concentration of a cumulative nephrotoxin and its bioaccumulation could have taken  

12–15 years to cause damage to the kidneys leading up to the level of clinically identifiable CKD.  

The increase in prevalence of CKDu and the shifting of age at diagnosis to younger age groups over 

the years are highly suggestive of the cumulative nature of the toxin. Furthermore, a comparatively 

low amount of agrochemicals has been used in the Northern Province of Sri Lanka, primarily due to a 

prohibition imposed by the government in this province. The prohibition was due to the potential of 
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these agrochemicals being used in the production of Improvised Explosive Devices (IEDs).  

These IEDs were used abundantly by armed groups of the terrorist movement that plagued the country 

until 2009 for causing mass destruction. This is the explanation for the fact that CKDu is still not 

prevalent in the farming areas of the Northern Province of Sri Lanka where the ground water hardness 

has remained high. Based upon these observations, here we summarizes the expected properties of the 

chemical Compound “X” that is hypothesized as the incriminating agent of CKDu. 

(a) A compound made of recently (2–3 decades) introduced chemicals to the CKDu endemic area. 

(b) Ability to form stable complexes with hard water. 

(c) Ability to capture and retain arsenic and nephrotoxic metals and act as a “carrier”  

in delivering these toxins to the kidney. 

(d) Possible multiple routes of exposure: ingestion, dermal and respiratory absorption. 

(e) Not having a significant first pass effect when complexed with hard water. 

(f) Presenting  difficulties in identification when using conventional analytical methods. 

The present authors have continuously searched for a possibility of Compound X over the time 

period of interest and noticed that aminophosphonic acid or aminophosphonate (known by the 

common chemical name glyphosate) is the most widely used herbicide in the contemporary world [17] 

as well as in Sri Lanka. The amount of glyphosate exceeded the sum of all other pesticides imported 

into Sri Lanka in 2012 (Table 1) [18]. The former Stauffer Chemical Company (Westport, CT, USA) 

initially obtained a patent for aminophosphonic acid as a chelating agent, wetting agent and 

biologically active compound [19]. Glyphosate was initially used as a descaling agent to clean out 

calcium and other mineral deposits in pipes and boilers of residential and commercial hot water 

systems. Descaling agents are effective metal binders, which grab on to Ca, Mg, etc. ions and make the 

metal water soluble and easily removable. Later, the Monsanto Company has acquired the chemical 

from Stauffer and obtained a patent for aminophosphonate for its herbicidal properties [20]. 

Table 1. Leading Pesticides imported to Sri Lanka in 2012. 

Rank Pesticide kg or L Approved for Import 

01 Glyphosate (acid equivalent) 5,295,082 
02 Propanil 995,310 
03 MCPA 686,375 
04 Mancozeb 671,504 
05 Chlorpyrifos 420,008 
06 Carbofuran 299,000 
07 Diazinon 196,735 
08 Profenofos 140,768 
09 Carbosulfan 107,000 
10 Pretilachlor + Pyribenzoxim 102,297 

2.1. Glyphosate 

Glyphosate or N-(phosphonomethyl)glycine is the aminophosphonic acid analog of the natural 

amino acid glycine. It was supposed to be first synthesized by Henri Martin in 1950 [21].  

The name glyphosate is derived from the word [Gly]cine [phos]phon[ate]. The Monsanto Company 
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acquired another patent for the phytotoxicant properties of N-(phosphonomethyl) glycine [22]. 

Glyphosate was quickly adopted by almost all farming communities throughout the World and was 

hailed as the magical total weed killer. In fact, glyphosate was acclaimed as the pesticide of the turn of 

the millennium and as the most significant chemical in modern agriculture [21]. Glyphosate is a 

compound with an amphoteric and zwitterion structure containing a basic secondary amino function in 

the middle of the molecule, monobasic-carboxylic and dibasic phosphonic acidic sites at both ends, 

hence having three functional groups, phosphonate, amino and carboxylic [23] (Figure 2). A zwitterion 

is a neutral molecule with positive and negative electrical charges at different locations within the 

same molecule. It is different from simple amphoteric compounds that might only form either a 

cationic or anionic species depending on external conditions—a zwitterion simultaneously has both 

ionic states within the same molecule [24]. 

Figure 2. Structure of glyphosate molecule and its functional groups. 

 

Further, glyphosate contains both hydrogen cation donor and acceptor functional groups and has 

excellent water solubility 12,000 mg/L [25]. The generally accepted mechanism of action of glyphosate is 

that it inhibits the enzyme 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS) of the shikimate 

pathway in the biosynthesis of tryptophan, phenylalanine and tyrosine (aromatic amino acids) [26].  

This pathway is present in plants, fungi and bacteria, but not in animals. Apart from the excellent water 

solubility and basipetal translocation ability (capability of transportation in the plant from the leaves 

towards the stem) [21] glyphosate is considered as the best herbicide ever discovered as it is readily 

degraded to non-toxic degradation products [27]. However, these claims have been debated and 

Monsanto Company was fined in a legal case with New York Attorney General’s office in 1996 as it 

had inaccurately represented the toxicological data of the glyphosate in its formulated product 

“Roundup”. In this case the Monsanto Company agreed to leave out the description of being 

“environmentally friendly and biodegradable” from its advertisements [28]. 

The stability of glyphosate in water or soil depends on several factors. It interacts strongly with soil 

components by forming stable complexes with metal ions. Adsorption is strongly influenced by cations 
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associated with the soil [29] as it is mainly the phosphonic acid moiety that participates in this process. 

Therefore, phosphate, which is a component of most fertilizers, competes with glyphosate in soil 

adsorption [30]. The typical half life of the glyphosate was found to be 92 days in water and 47 days in 

soil [31,32]. However, the absorption of chelating agents or metals has been shown to decrease the 

biodegradability of glyphosate (Figure 3) [23,27,33–35]. Radioactive 14C-glyphosate studies have 

shown that half-life can increase up to 7 years [36] or even up to 22 years [37] in the soil. Glyphosate 

is a dianion in moderately buffered soils and water systems when the pH is higher than 6.5. This 

suggests that under such conditions glyphosate will form strong complexes with metal ions [35]. The 

increased solubility of its alkali metal glyphosate can leach into deep soil layers [38]. Further, it has 

been shown that amino methyl phosphonic acid (AMPA) the primary metabolite of glyphosate is more 

mobile in the soil than the parent compound [39,40]. Detection of glyphosate in the laboratory is very 

difficult due to its ionic character, high polarity, high solubility in water, low volatility, insolubility in 

organic solvents and strong complexion behavior [41].  

Figure 3. Degradation pathways of glyphosate in normal water and in hard water. 

 

2.2. Glyphosate-metal Complex (GMC) 

Glyphosate-hard water/Ca/Mg interaction has been the subject of many scientific studies.  

The negative influence of hard water on the herbicidal properties of glyphosate is a well-identified 

problem in terms of the efficacy of its weed control [35,42–47]. Several measures have also been 

identified to overcome the antagonism of spray carrier water hardness of glyphosate [48,49].  

These strategies mainly depend on the stability of GMC in different pH values. Usually this GMC is 
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stable in basic media and unstable in acidic media. Smith and Raymond 1987 [50] have studied the 

solid state and solution chemistry of calcium glyphosate. They have isolated the polymeric chemical 

structure of the compound by using single crystal X-ray diffraction. All the adsorption, 

photodegradation and biodegradation processes of glyphosate are modified by the presence of metal 

ions [51]. Nuclear magnetic resonance (NMR) studies done by Thelan et al indicate the hard water 

cations Ca and Mg interact with both phosphonate and carboxyl functional groups of the glyphosate 

molecule [46]. Further, they have shown that over time, the association of the cations with glyphosate 

progress to a more structured chelate stable orientation. Glyphosate not only forms stable complexes 

with Ca and Mg, but also with many other divalent and trivalent metallic cations (Figure 4).  

Caetano et al. [52] assessed the stability of glyphosate—metal complexes and found that the strength 

of the stability of divalent cations is in the order, Zn > Cu > Ca > Mg and for trivalent cations,  

Co > Fe > Cr > Al, respectively. In the same study, the authors extensively studied the stability of 

tetrahedral and octahedral glyphosate-metal complexes as well. 

Figure 4. Structures of complexes formed by (a) one molecule (b) two molecules of 

glyphosate and metal. 

 

When we go back to the CKDu situation in Sri Lanka and hypothesize that glyphosate is 

“Compound X”, we can explain almost all of the above-mentioned observations coherently. It provides 

rational answers for the geographical distribution of the CKDu and the appearance of the disease in the 

mid-1990s. Glyphosate and its primary metabolite AMPA can directly leach into the ground water and 

easily chelate to Ca, Mg and Sr copiously present in ground water in the North Central Province and 

adjacent rice paddy farming areas in the Sri Lanka. Many farmers use hard water to dissolve 
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glyphosate to prepare the spraying solutions as well. Further it is reported that rice paddy farming soil 

in CKDu endemic area is rich with Ca, Mg, Fe, Cr, Nickel (Ni), Co and other metals [53,54].  

It can easily combine with glyphosate and form complexes, which later leach into the ground water. 

Ferric ions also play a significant role in the process of adsorption of glyphosate and AMPA in soil [55]. 

Furthermore, within a couple of weeks after the spraying of glyphosate farmers apply triple phosphate 

(TSP) to the paddy fields. Recent findings have shown that the TSP available in Sri Lanka is 

contaminated with significant amounts of Cd, Cr, Ni and Pb [54]. Divalent cations of these nephrotoxic 

metals are capable of forming stable compounds with glyphosate [35]. Furthermore, it was also found 

that TSP used in Sri Lanka is a very rich source of arsenic [56]. 

Other modes of ingestion of glyphosate are dermal and respiratory. Low levels of glyphosate have 

frequently been detected in the urine of farm workers shortly after the glyphosate application [57]. 

Farmers in Sri Lanka spray pesticides manually under hot climatic conditions. Glyphosate preparations 

are easily dissolved in sweat and absorbed transdermally [58]. As the majority of farmers do not use any 

protective gear, absorption through the respiratory route may also play a significant role. Rice is the 

staple diet of farmers. Recent findings have revealed that rice, vegetables and raw tobacco available in 

the CKDu endemic areas are contaminated with Cd and As [2]. Chewing of betel with tobacco is a 

common practice among farmers in Sri Lanka. The phosphorous atom in the phosphonic group in the 

glyphosate/AMPA molecule can possibly be replaced by As [59,60]. Following dermal and respiratory 

absorption of glyphosate, it can form complexes with nephrotoxic metals and As derived from rice, 

vegetables and tobacco within the circulation. As such, we can identify three potential sources of 

glyphosate/AMPA-metal complexes: 

(a) [Glyphosate/AMPA + Ca/Mg/Fe/Sr ] complex in drinking water. 

(b) [Glyphosate/AMPA + Cd/Cr/Ni/Co/Pb/Vanadium (V) or As] complex in food. 

(c) [Glyphosate/AMPA coming from dermal/ respiratory route] + low amount of [metals/As] 

from water and foods, here the complex is formed within circulation. 

Helfter Enterprises, Inc. now doing business as Advanced Biological Concepts has proposed a 

structure for glyphosate matrix [61], while Caetano and coworkers [52] have developed a more 

advanced and comprehensive structure for glyphosate metal complexes. The latter group has used 

density functional theory (DFT) molecular modeling methods to evaluate structural thermodynamic 

and electronic effects that govern the complexion between glyphosate and metals. With the permission 

of both groups of authors, we used these structures to propose a glyphosate-metal lattice to explain the 

possible role played by glyphosate, hardness, As and other nephrotoxic metals in the pathogenicity of 

CKDu in Sri Lanka (Figure 5). 

This hypothesis also explains the observation of increased ground water hardness in paddy farming 

areas in Sri Lanka. Various divalent and trivalent metal glyphosate compounds accumulate in ground 

water over the years and made ground water more hard and distasteful. Natural springs located in the 

CKDu endemic area are devoid of high Ca and Mg content, hence these natural springs do not retain 

glyphosate. In light of this explanation, it is reasonable to hypothesize that glyphosate-metal complex 

plays a major role in the CKDu disease process. It explains why CKDu is not present among people 

who drink natural spring water or surface water in the disease endemic area. Also the limited use of 
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herbicide and chemical fertilizers in the northern region over the last few decades may be the reason 

for lack of CKDu there despite the consumption of hard water by the inhabitants in this area. 

Figure 5. Structure of glyphosate-metal-arsenic lattice. 

 

2.3. The Nephrotoxicity of Glyphosate-metal/As (GMA) Lattice 

The next important question to be answered is whether the glyphosate-metal complex is 

nephrotoxic or not. Nephrotoxicity of As, Cd and other heavy metals is a known fact [62].  

Many studies have been conducted to assess the activity of Ca-glyphosate, Mg-glyphosate behavior in 

soil water and in plants [38]. The majority of them have been targeted to overcome the antagonistic 

ability of Ca/Mg on glyphosate [63]. Although glyphosate has a history of more than 40 years of usage 

as an herbicide and it has been almost 50 years since the identification of hardness-aminophosphonic 

acid reaction, none of the available studies has focused on the animal or human health effects of 

hardness-glyphosate complex. However, glyphosate alone has been the subject of several animal studies. 

Jiraunghoorskul et al. [64] described changes in proximal tubular cells of Nile Tilapia exposed to 

glyphosate. Ayoola [65] has shown the development of hematopoietic necrosis and severe  

pyknotic nuclei, dilatation of bowman’s space, accumulation hyaline droplets in tubular epithelial cells 

in the proximal tubule and degenerated tubules in juvenile African catfish exposed to glyphosate. 

Seralini and others [66] have shown in a long term study that glyphosate increased serum creatinine, 

blood urea and reduced the weight of kidneys of rats who were fed with glyphosate exposed maize. 

Tizhe et al. [67] have provided further confirmation that oral exposure of glyphosate increases blood 

urea levels and lead to renal dysfunction in rats. Larsen et al. [68] have described the glutathione 

peroxidase dependent reduction of cumenehydroperoxide in kidneys of rats exposed to glyphosate in 

drinking water. Kruger et al. [69] has shown a similar nephrotoxic effect in dairy cows exposed to 

glyphosate. Although EPSPS and the shikimate pathways are not present in animals, the inhibition of 
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other pathways such as cytochrome p450 and aromatase is the possible explanation of genotoxic [70] 

and teratogenic [71] activity of glyphosate and the dose dependent effects of round up on human 

embryonic and placental cells [72]. Glyphosate has also been documented to induce apoptosis and 

necrosis in human umbilical, embryonic and placental cells [73] and cause endocrine disruptive effects 

on human cell lines [74].  

2.4. Compound X-elusiveness of Detection by Standard Tests 

Persistence of glyphosate in water have previously been reported [75,76]. In a recent study done in 

Catalonia, Spanish researchers reported that glyphosate was present above the limits of detection in 

41% of the ground water samples obtained from areas where intense agricultural activities had taken 

place [77]. Another Spanish study has shown that certain chelating agents when present in ground 

water can produce false negative results for glyphosate tests, however, the same phenomenon was not 

observed in the case of surface water [78]. These researchers found that acidification of ground water 

samples to a level of pH 1 can lead to significant changes in the final readings of the glyphosate tests. 

Difficulty in the analysis of glyphosate and AMPA in the presence of multivalent cations was 

demonstrated in a study done in France [79]. In this study, investigators have shown that only the free 

forms of glyphosate and AMPA are sensitive to analytical methods and exact concentration is 

underestimated particularly in ground water. In Europe 0.1 μg/L is administratively set as the upper 

tolerable level for all the pesticides, including glyphosate in drinking water [80]. 

2.5. Lack of a Significant First Pass Effect 

Once the glyphosate-metal-As lattice enters the circulation it may bypass the normal liver 

detoxification process. Usually divalent metal transporter-1 (DMT-1) mediates absorption of heavy 

metals in the small intestine [81]. Thereafter, it is transported to the liver and binds with 

metallothioneins (MTs)—a protein with high content of cystine [82]. The main function of MTs is to 

transfer heavy metals to various metalloproteins, transcription factors, and enzymes [83].  

Here, we hypothesize that the liver cannot metabolize the GMA lattice due to its unique configuration. 

The structure of cystine closely resembles that of glycine [84]. Glyphosate/AMPA is the 

aminophosphonic analog of the natural amino acid glycine [21]. As the heavy metals are already 

bound to glyphosate/AMPA the binding sites that would have normally attracted MTs are already 

occupied. As such, these GMA complexes pass through the liver without a significant first pass effect. 

This assumption also explains the normal liver enzyme levels and minimal ultrasonic changes in the 

liver of patients with CKDu. Once GMA lattice reaches the kidney, the glomerular-proximal tubular 

area provides a distinctive microenvironment conducive to the breakdown of the lattice. Differences in 

the pH and the presence of various metabolic products provide this background. Kidneys excrete  

50–100 meq/day of non-carbonic acid generated daily. This is achieved by H+ ion secretion at different 

levels in the nephron. The entire daily acid load cannot be excreted as free H+ ions. Secreted H+ ions 

are excreted by binding to either buffers, such as HPO4
2− and creatinine, or to NH3 to form ammonium 

ions (NH4
+). Ammonium is produced from glutamine in the proximal tubule [85–87].  

NH+
4 ions have been used for many decades by agricultural experts to minimize the binding of 

glyphosate to hard water which effectively decreases the availability of the active weedicide [88].  
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Further, in analytical chemistry acidification is used as an effective dissociation method of 

glyphosate/AMPA complexes to obtain free forms [78]. Therefore, we have further hypothesized that 

this high concentration of the NH+
4 ions that releases the heavy metal from the GMA lattice in the 

proximal tubular area. 

When lattice is broken down, it releases metals and arsenic. Excessive amount of glyphosate/AMPA 

and As may start the damage to the glomeruli while As, Cd, Cr, Ni, Co, Pb, V are reabsorbed up to a 

certain extent at the proximal tubules resulting in further tubular damage. Long-term exposure to these 

substances causes oxidative stress, nitrosative stress, apoptosis and necrosis [89–91] in the glomerular 

and proximal tubular cells. Glomerular sclerosis, glomerular collapse and tubular interstitial damage 

are the result of these pathological mechanisms (Figure 6). Several animal studies have already 

demonstrated the reduction of GFR in chronic toxin (adriamycin) induced nephropathy associated with 

the development of both tubulointerstitial nephritis and glomerular sclerosis [92]. Furthermore,  

Javaid and coworkers [93] have shown that the reduction of GFR is closely correlated with the extent 

to which glomeruli are no longer connected to the normal tubules. They suggest that a local extension 

of glomerular injury to destroy the tubular neck is an important cause of loss of renal functions.  

If we apply the same model to CKDu this explains the comparatively low level of urinary excretion of 

creatinine, As, Cd, Cr, Ni, Co, V and glyphosate by CKDu patients (Cases) when compared to healthy 

individuals in the same family or living in the same endemic area (Controls) (unpublished data 

produced at the California State University, Long Beach, CA, USA). Presence of high levels of As and 

Cd in nail and hair samples of CKDu cases as compared to the controls [1,2] is confirmatory evidence 

of the exposure and accumulation of As and Cd in the body as the kidneys become increasingly 

incapable of excreting them. Destruction of the tubular necks following long term exposure to GMA 

lattice also brings about a sudden decrease of renal functions in the later stages of the CKDu which 

result in the death of the patient if dialysis or renal transplantation is not done. 

3. CKDu Elsewhere 

A CKDu epidemic very similar to that of Sri Lanka has been identified among the paddy farmers in 

Andra Pradesh—a southeastern province of India [94]. These authors reported that ground water is the 

only available water source in Uddanam and Chikamurthy, two of the areas with the highest  

CKDu prevalence. Analysis of samples of drinking water revealed that metal ions and trace elements 

in drinking water were within allowable limits, and thus not expected to lead to any deleterious effects 

on human health. However, in these findings it was clearly shown that the total hardness, Ca, Mg and Sr 

values are quite high. Especially in Chikamurthy area, some of the drinking water samples exceed 

1,000 mg/L of total hardness. The authors may not have paid enough attention to this finding as 

hardness is not identified as a nephrotoxin or as causing significant human health problems,  

apart from being a suggested risk factor for exacerbation of eczema [13]. This is exactly the same 

situation that happened in Sri Lanka. The Sri Lanka Ministry of Health and the WHO conducted a joint 

investigation and an evaluation of CKDu in Sri Lanka from 2008 to 2013. In the third progress report 

of the WHO handed over to the Ministry of Health Sri Lanka on 19 February 2012, it has been mentioned 

that the waters in the 99% of the sources used by patients with CKDu are hard to very hard [95]. However, 

this factor has not received any further attention when the WHO and the Ministry of Health produced 
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their final scientific publication [2]. The inability to detect glyphosate-metal complexes using the 

commonly used analytical methods may have deterred the investigators in both Sri Lanka and Andra 

Pradesh from looking further into the role of these compounds in CKDu. 

Figure 6. GMA lattice hypothesis in summary. 

 

An epidemic of tubular nephropathy has been identified among young male farm workers in  

sub-regions of the Pacific coasts of the Central American (CA) countries of El Salvador, Nicaragua 

and Costa Rica [96,97]. Like the Sri Lankan and Indian scenarios, the etiology is not linked to the most 

frequent causes of CKD such as diabetes mellitus and hypertension. Rubio et al. [98] estimated a death 

toll of at least 20,000 in the CA region for the last two decades. In El Salvador, hospitalization for 

CKD increased by 50 percent from 2005 to 2012 and today, it has become the leading cause of 

hospital deaths. A total of 39,000 of hospitalized cases of CKDu in El Salvador were reported,  

while 1,474 of them were below the age of 20 years [99]. Clinical, biochemical and histopathological 

characteristics of CKDu in both Sri Lanka and CA shares a very similar pattern [100].  
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Therefore, it’s logical to argue that the etiologies in both regions could have many commonalities.  

The disease is common in sugarcane cultivating areas in CA where some of them previously used to 

grow cotton [101]. Both sugarcane and rice belong to the grass family and need a comparatively higher 

amount of agrochemicals in large-scale cultivation [102]. Glyphosate is the leading pesticide used in 

El Salvador as well [103]. If we apply the same hypothesis to explain the CKDu in CA it can logically 

explain the occurrence of disease among male farm workers in pacific coastal line. The CA Pacific 

coastal line belongs to the volcanic belt [104,105]. In this region soil and groundwater naturally 

contain high amounts of metals and As [106]. These levels of As could be additive to the As which 

originated from fertilizers and agrochemicals as pesticides with inorganic As were commonly used in 

cotton cultivation. When sugarcane became the leading crop in the Pacific coastal line  

after 1990s [107], this crop could have used huge amounts of glyphosate, 2,4-D and other pesticides. 

These conditions make it highly the suitable for the formation of a GMA lattice in ground water and 

soil with the consequent bioaccumulation in people living in this area. The El Salvador National 

Institute of Health also confirmed that the water from shallow wells had been the main drinking water 

source for the majority of CKDu patients in the country. Furthermore, they have detected significant 

amounts of hardness, As and heavy metal levels in their water samples [108]. 

4. Glyphosate as “Compound-X”—Available Evidence and Areas for Further Research 

To prove that glyphosate is the “Compound-X” that chelates with calcium and the other metals to 

become the causative agent of CKDu, one has to establish a clear chain of evidence. The first link in 

this chain is a well-established fact as shown earlier–that is, glyphosate is a strong metal chelator  

(for Ca, Mg, Sr, Cd, Cr, Ni, Co, Pb); It is immobilized in soil by chelating with soil cations;  

It persists and accumulates in soil and plants for extended periods (years)–therefore, these immobilized 

chelates can contaminate the water table. 

The second link in the hypothesis is to confirm that the water from the wells which the  

CKDu patients have used is contaminated with glyphosate and metal ions. In another study that is 

ongoing at California State University, Long Beach, CA, USA we have tested water samples (n = 50) 

from these contaminated wells and found that almost all of them contained glyphosate with high 

content of Ca and other metals. The authors had to use a special Enzyme Linked Immuno-Sorbent 

Assay (ELISA) test to detect these glyphosate-metal complexes, as they are not amenable to the 

conventional analytical methods. Glyphosate and heavy metals were also found in the urine of both 

CKDu patients as well as the control subjects who lived in the CKDu endemic area. This is not 

surprising as most of the controls drank water from the same wells. Therefore, we have confirmatory 

proof on the ingestion of these complexes in drinking water and excretion of components of the 

complex in urine. The manner in which the glyphosate metal complexes are absorbed through the 

intestines needs further research, perhaps beginning with animal models. None of the CKDu patients 

(n = 125) showed any significant elevation of liver enzymes or ultrasound evidence of detectable liver 

pathology. This is the best evidence that we have so far about the escape from the first pass 

metabolism by the glyphosate metal complexes. This is the same reason why we see more renal 

manifestations in As poisoning of CKDu patients. However, we occasionally see the classic cutaneous 

and liver manifestations only in some CKDu patients with advanced renal damage [1].  
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Acquavella et al. [57] have demonstrated how the glyphosate excretion increased in 48 farmers and 

their families after spraying. However, they have not separately assessed the contributions of the 

dermal and respiratory routes of exposure. Further research should be undertaken to study how 

glyphosate is absorbed into the circulation through dermal and respiratory routes, particularly after 

spraying the pesticide. 

The third link in this hypothesis is how the glyphosate metal complex contributes to renal damage. 

From current renal physiology it is well known that ammonium ions are generated in proximal tubule. 

In fact, this is the principle component of the acid excretion of the kidney [109]. It is also well known 

from USA studies that ammonium sulphate is used as a buffer to release glyphosate bound to metal 

ions [88]. Therefore, it is plausible to assume that this same mechanism is in effect in the proximal 

tubule. However further research including renal biopsies and animal studies are necessary to confirm 

that this is actually the same mechanism that is at work within the renal tubules. 

5. Conclusions 

CKDu, the major health issue in the rice paddy farming areas in Sri Lanka, has been the subject of 

many scientific and political debates over the last decade. Although there is no agreement among 

scientists about the etiology of the disease, a majority of them have concluded that this is a toxic 

nephropathy. None of the hypotheses put forward so far could explain coherently the totality of 

clinical, biochemical, histopathological findings, and the unique geographical distribution of the 

disease and its appearance since the mid 1990s. 

The strong association of the consumption of hard water and occurrence of CKDu has been 

subjected to many discussions among investigators, but none of the available theories could explain 

this relationship coherently. Here we have explained the association by using glyphosate,  

the most widely used herbicide in the disease endemic area. The strong metal chelating property of 

glyphosate and related compounds is a well-known fact. However, the human health effects of 

glyphosate-metal complexes have not been given any serious consideration by investigators for last 

four decades. Huge advertising campaigns by glyphosate as the best ever herbicide discovered by 

mankind, reiteration of the easily degradable nature of the original compound in a natural environment 

and the difficulties in the laboratory detection may have been the reasons for this delay. Results being 

produced through the current study that is ongoing in the California State University, Long Beach are 

highly supportive of this hypothesis. Stability of glyphosate metal complexes in various environmental 

conditions and nephrotoxic properties of the compound should be the subjects of further investigation. 

The GMA lattice hypothesis gives rational and consistent explanations to the many observations 

and unanswered questions associated with the mysterious kidney disease in rural Sri Lanka. 

Furthermore, it may explain the similar epidemics of CKDu observed in Andra Pradesh, India and 

Central America. Although glyphosate alone does not cause an epidemic of chronic kidney disease,  

it seems to have acquired the ability to destroy the renal tissues of thousands of farmers when it forms 

complexes with a localized geo environmental factor (hardness) and nephrotoxic metals. It is logical to 

find out other agricultural areas in the World where excessive use of glyphosate and drinking ground 

water with high hardness and the contamination of ground water and food with nephrotoxic metals 

have overlapped in causing kidney damage. 
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