Bibliography Tag: cancer risks

Ledda et al., 2021

Ledda C, Cannizzaro E, Cinà D, Filetti V, Vitale E, Paravizzini G, Di Naso C, Iavicoli I, Rapisarda V. “Oxidative stress and DNA damage in agricultural workers after exposure to pesticides.” Journal of Occupational Medicine and Toxicology. 2021 Jan 7;16(1):1. DOI: 10.1186/s12995-020-00290-z.

ABSTRACT:

BACKGROUND: Recent epidemiological studies on workers describe that exposure to pesticides can induce oxidative stress by increased production of free radicals that can accumulate in the cell and damage biological macromolecules, for example, RNA, DNA, DNA repair proteins and other proteins and/or modify antioxidant defense mechanisms, as well as detoxification and scavenger enzymes. This study aimed to assess oxidative stress and DNA damage among workers exposed to pesticides.

METHODS: For this purpose, 52 pesticide exposed workers and 52 organic farmers were enrolled. They were assessed: the pesticide exposure, thiobarbituric acid reactive substances (TBARS), total glutathione (TG), oxidized glutathione levels (GSSG), and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), levels.

RESULTS: Correlation between pesticide exposure was positively associated with high TBARS and 8-oxodG levels (p < 0.001). A negative association was founded with TG and GSSG and pesticide exposure.

CONCLUSIONS: The present investigation results seem to indicate a mild augment in oxidative stress associated with pesticide exposure, followed by an adaptive response to increase the antioxidant defenses to prevent sustained oxidative adverse effects stress. FULL TEXT


Mnif et al., 2011

Mnif W, Hassine AI, Bouaziz A, Bartegi A, Thomas O, Roig B. “Effect of endocrine disruptor pesticides: a review.” International Journal of Environmental Research and Public Health. 2011 Jun;8(6):2265-303. DOI: 10.3390/ijerph8062265.

ABSTRACT: Endocrine disrupting chemicals (EDC) are compounds that alter the normal functioning of the endocrine system of both wildlife and humans. A huge number of chemicals have been identified as endocrine disruptors, among them several pesticides. Pesticides are used to kill unwanted organisms in crops, public areas, homes and gardens, and parasites in medicine. Human are exposed to pesticides due to their occupations or through dietary and environmental exposure (water, soil, air). For several years, there have been enquiries about the impact of environmental factors on the occurrence of human pathologies. This paper reviews the current knowledge of the potential impacts of endocrine disruptor pesticides on human health. FULL TEXT


Franke et al., 2021

Franke, Adrian A., Li, Xingnan, Shvetsov, Yurii B., & Lai, Jennifer F.; “Pilot study on the urinary excretion of the glyphosate metabolite aminomethylphosphonic acid and breast cancer risk: The Multiethnic Cohort study;” Environmental Pollution, 2021, 277, 116848; DOI: https://doi.org/10.1016/j.envpol.2021.116848.

ABSTRACT:

Breast cancer is the most commonly diagnosed female cancer and the second leading cause of death in women in the US, including Hawaii. Accumulating evidence suggests that aminomethylphosphonic acid (AMPA), the primary metabolite of the herbicide glyphosate—a probable human carcinogen, may itself be carcinogenic. However, the relationship between urinary AMPA excretion and breast cancer risk in women is unknown. In this pilot study, we investigated the association between pre-diagnostic urinary AMPA excretion and breast cancer risk in a case-control study of 250 predominantly postmenopausal women: 124 cases and 126 healthy controls (individually matched on age, race/ethnicity, urine type, date of urine collection, and fasting status) nested within the Hawaii biospecimen subcohort of the Multiethnic Cohort. AMPA was detected in 90% of cases and 84% of controls. The geometric mean of urinary AMPA excretion was nearly 38% higher among cases vs. controls (0.087 vs 0.063 ng AMPA/mg creatinine) after adjusting for race/ethnicity, age and BMI. A 4.5-fold higher risk of developing breast cancer in the highest vs. lowest quintile of AMPA excretion was observed (ORQ5 vs. Q1: 4.49; 95% CI: 1.46–13.77; ptrend = 0.029). To our knowledge, this is the first study to prospectively examine associations between urinary AMPA excretion and breast cancer risk. Our preliminary findings suggest that AMPA exposure may be associated with increased breast cancer risk; however, these results require confirmation in a larger population to increase study power and permit careful examinations of race/ethnicity differences.


Alavanja et al., 2004

Alavanja, M. C., Hoppin, J. A., & Kamel, F.; “Health effects of chronic pesticide exposure: cancer and neurotoxicity;” Annual review of public health, 2004, 25, 155-197; DOI: 10.1146/annurev.publhealth.25.101802.123020.

ABSTRACT:

Pesticides are widely used in agricultural and other settings, resulting in continuing human exposure. Epidemiologic studies indicate that, despite premarket animal testing, current exposures are associated with risks to human health. In this review, we describe the routes of pesticide exposures occurring today, and summarize and evaluate the epidemiologic studies of pesticide-related carcinogenicity and neurotoxicity in adults. Better understanding of the patterns of exposure, the underlying variability within the human population, and the links between the animal toxicology data and human health effects will improve the evaluation of the risks to human health posed by pesticides. Improving epidemiology studies and integrating this information with toxicology data will allow the human health risks of pesticide exposure to be more accurately judged by public health policy makers. FULL TEXT


Blair et al., 1985

Blair, A., Malker, H., Cantor, K. P., Burmeister, L., & Wiklund, K.; “Cancer among farmers. A review;” Scandinavian Journal of Work, Environment, & Health, 1985, 11(6), 397-407; DOI: 10.5271/sjweh.2208.

ABSTRACT:

During the performance of routine tasks farmers may come in contact with a variety of substances, including pesticides, solvents, oils and fuels, dusts, paints, welding fumes, zoonotic viruses, microbes, and fungi. Because some of these substances are known or suspected carcinogens, the epidemiologic literature regarding cancer risks concerning farmers has been reviewed. Farmers had consistent deficits for cancers of the colon, rectum, liver, and nose. The deficits for cancer of the lung and bladder were particularly striking, presumably due to less frequent use of tobacco among farmers than among people in many other occupational groups. Malignancies frequently showing excesses among farmers included Hodgkin’s disease, leukemia, non-Hodgkin’s lymphoma, multiple myeloma, and cancers of the lip, stomach, prostate, skin (nonmelanotic), brain, and connective tissues. The etiologic factors that may contribute to these excesses in the agricultural environment have not been identified. Detailed, analytic epidemiologic studies that incorporate environmental and biochemical monitoring are needed to clarify these associations. FULL TEXT


Blair and Zahm, 1993

Blair, A., & Zahm, S. H.; “Patterns of pesticide use among farmers: implications for epidemiologic research;” Epidemiology, 1993, 4(1), 55-62; DOI: 10.1097/00001648-199301000-00011.

ABSTRACT:

Epidemiologic studies of farmers have linked pesticides with certain cancers. Information on exposures from many of these studies was obtained by interview of farmers or their next-of-kin. The reliability and validity of data on pesticide use obtained by recall, often years after the event, have been questioned. Pesticide use, however, is an integral component in most agricultural operations, and the farmers’ knowledge and recall of chemicals used may be better than for many other occupations. Contrary to general belief, many farmers typically use only a few pesticides during their lifetimes and make only a few applications per year. Data from U.S. Department of Agriculture surveys indicate that herbicides are applied to wheat, corn, soybeans, and cotton and that application of insecticides to corn averages two or fewer times per year. In epidemiologic studies at the National Cancer Institute, the proportion of farmers ever reporting lifetime use of five or more different chemicals was 7% for insecticides and 20% for herbicides. Surrogate respondents have often been used in epidemiologic studies of cancer; they are able to recall pesticide use with less detail than the farmers themselves. The pesticides reported by surrogates were the same as reported by subjects themselves, but with less frequency. Comparison of reporting by cases and controls provided no evidence of case-response (differential) bias; thus, inaccurate recall of pesticide use by subjects or surrogates would tend to diminish risk estimates and dilute exposure-response gradients. FULL TEXT


Blair et al., 1992

Blair, A., Zahm, S. H., Pearce, N. E., Heineman, E. F., & Fraumeni, J. F., Jr.; “Clues to cancer etiology from studies of farmers;” Scandinavian Journal of Work, Environment, & Health, 1992, 18(4), 209-215; DOI: 10.5271/sjweh.1578.

ABSTRACT:

This article summarizes cancer risks among farmers to clarify the magnitude of the problem and to suggest directions for future research. Significant excesses occurred for Hodgkin’s disease, multiple myeloma, leukemia, skin melanomas, and cancers of the lip, stomach, and prostate. Nonsignificant increases in risk were also noted for non-Hodgkin’s lymphoma and cancers of connective tissue and brain. These excesses occurred against a background of substantial deficits among farmers for total mortality and mortality from many specific diseases. The tumors vary in frequency, histology, and prognosis and do not fall into any obvious grouping. Two commonalities may be important. Several of the tumors excessive among farmers appear to be rising in the general population and are excessive among patients with naturally occurring or medically induced immunodeficiencies. Therefore epidemiologic studies on specific exposures among farmers may help explain the rising trend of certain cancers in developed countries and provide clues to mechanisms of action for environmental carcinogens. FULL TEXT

 


Alavanja et al., 2004

Alavanja, M. C., Dosemeci, M., Samanic, C., Lubin, J., Lynch, C. F., Knott, C., Barker, J., Hoppin, J. A., Sandler, D. P., Coble, J., Thomas, K., & Blair, A.; “Pesticides and lung cancer risk in the agricultural health study cohort;” American Journal of Epidemiology, 2004, 160(9), 876-885; DOI: 10.1093/aje/kwh290.

ABSTRACT:

The authors examined the relation between 50 widely used agricultural pesticides and lung cancer incidence in the Agricultural Health Study, a prospective cohort study of 57,284 pesticide applicators and 32,333 spouses of farmer applicators with no prior history of lung cancer. Self-administered questionnaires were completed at enrollment (1993-1997). Cancer incidence was determined through population-based cancer registries from enrollment through December 31, 2001. A lung cancer standardized incidence ratio of 0.44 (95% confidence interval: 0.39, 0.49) was observed overall, due in large part to a low cigarette smoking prevalence. Two widely used herbicides, metolachlor and pendimethalin (for low-exposed groups to four higher exposure categories: odds ratio (OR) = 1.0, 1.6, 1.2, 5.0; p(trend) = 0.0002; and OR = 1.0, 1.6, 2.1, 4.4; p(trend) = 0.003, respectively), and two widely used insecticides, chlorpyrifos and diazinon (OR = 1.0, 1.1, 1.7, 1.9; p(trend) = 0.03; and OR = 1.0, 1.6, 2.7, 3.7; p(trend) = 0.04, respectively), showed some evidence of exposure response for lung cancer. These excesses could not be explained by previously identified lung cancer risk factors. The usage levels in this cohort are considerably higher than those typically experienced by the general population. An excess risk among spouses directly exposed to pesticides could not be evaluated at this time. FULL TEXT


Benbrook, 2020

Benbrook, Charles; “Shining a Light on Glyphosate-Based Herbicide Hazard, Exposures and Risk: Role of Non-Hodgkin Lymphoma Litigation in the USA;” European Journal of Risk Regulation, 2020, 11(3), 498-519; DOI: 10.1017/err.2020.16.

ABSTRACT:

Roundup, and other glyphosate-based herbicides, are the most heavily used pesticides in the history of the USA and globally. In March 2015, the International Agency for Research on Cancer (IARC) classified glyphosate as a “probable human carcinogen”. A portion of the 695,000 Americans then living in 2015 with non-Hodgkin lymphoma (NHL) became aware of IARC’s decision. Several thousand Roundup–NHL lawsuits had been filed by the end of 2017, rising to 18,400 by July 2019 and 42,000 by November 2019. Three cases have gone to trial, each won by the plaintiffs. The author has served as an expert witness for the plaintiffs in this litigation and has been compensated for his time spent. The impact of the litigation on the independent assessment of the science useful in determining whether glyphosate and glyphosate-based herbicide exposures are linked to NHL is reviewed, as is why the US Environmental Protection Agency (EPA) and IARC reached such different judgements regarding glyphosate human cancer hazard and risk. Two important “lessons learned” regarding the EPA versus IARC assessment of glyphosate cancer hazard and risk are highlighted. The first arises from differences in the magnitude of applicator risks from mostly dermal exposures to formulated glyphosate-based herbicides compared to just dietary exposures to technical glyphosate. The second relates to missed opportunities to markedly lower applicator exposures and risks with little or no impact on sales via reformulation, added warnings and worker safety provisions, company-driven stewardship programmes and greater determination by the EPA in the 1980s to compel Monsanto to add common-sense worker protection provisions onto Roundup labels (eg “wear gloves when applying this product”). Policy reforms designed to alleviate systemic problems with how pesticide hazards, exposures and risks are analysed, regulated and mitigated are described. FULL TEXT


Connolly et al., 2020

Connolly, A., Coggins, M. A., & Koch, H. M.; “Human Biomonitoring of Glyphosate Exposures: State-of-the-Art and Future Research Challenges;” Toxics, 2020, 8(3); DOI: 10.3390/toxics8030060. https://www.ncbi.nlm.nih.gov/pubmed/32824707.

ABSTRACT:

Glyphosate continues to attract controversial debate following the International Agency for Research on Cancer carcinogenicity classification in 2015. Despite its ubiquitous presence in our environment, there remains a dearth of data on human exposure to both glyphosate and its main biodegradation product aminomethylphosphonic (AMPA). Herein, we reviewed and compared results from 21 studies that use human biomonitoring (HBM) to measure urinary glyphosate and AMPA. Elucidation of the level and range of exposure was complicated by differences in sampling strategy, analytical methods, and data presentation. Exposure data is required to enable a more robust regulatory risk assessment, and these studies included higher occupational exposures, environmental exposures, and vulnerable groups such as children. There was also considerable uncertainty regarding the absorption and excretion pattern of glyphosate and AMPA in humans. This information is required to back-calculate exposure doses from urinary levels and thus, compared with health-based guidance values. Back-calculations based on animal-derived excretion rates suggested that there were no health concerns in relation to glyphosate exposure (when compared with EFSA acceptable daily intake (ADI)). However, recent human metabolism data has reported as low as a 1% urinary excretion rate of glyphosate. Human exposures extrapolated from urinary glyphosate concentrations found that upper-bound levels may be much closer to the ADI than previously reported. FULL TEXT