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A B S T R A C T

There are currently various concerns regarding certain environmental toxins and the possible impact they can
have on developmental diseases. Glyphosate (Gly) is the most utilised herbicide in agriculture, although its
widespread use is generating controversy in the scientific world because of its probable carcinogenic effect on
human cells. Gly performs as an inhibitor of 5-enolpyruvylshikimate-3-phospate synthase (EPSP synthase), not
only in plants, but also in bacteria. An inhibiting effect on EPSP synthase from intestinal microbiota has been
reported, affecting mainly beneficial bacteria. To the contrary, Clostridium spp. and Salmonella strains are shown
to be resistant to Gly. Consequently, researchers have suggested that Gly can cause dysbiosis, a phenomenon
which is characterised by an imbalance between beneficial and pathogenic microorganisms. The overgrowth of
bacteria such as clostridia generates high levels of noxious metabolites in the brain, which can contribute to the
development of neurological deviations. This work reviews the impact of Gly-induced intestinal dysbiosis on the
central nervous system, focusing on emotional, neurological and neurodegenerative disorders. A wide variety of
factors were investigated in relation to brain-related changes, including highlighting genetic abnormalities,
pregnancy-associated problems, diet, infections, vaccines and heavy metals. However, more studies are required
to determine the implication of the most internationally used herbicide, Gly, in behavioural disorders.

1. Introduction

The influence of microbiome on mood regulation, depression and
cognitive function has been demonstrated and accepted for years
(Mangiola et al., 2016; Naseribafrouei et al., 2014). Found inside the
digestive system, the enteric nervous system consists of a network of
neurons forming a nerve plexus, which is interconnected with the
central nervous system (CNS) (Furness et al., 2014). Pathways linking
between the microbiome and CNS are established by vagal afferences
and the circulatory system (neurotransmitters, hormones, cytokines,
and metabolites) (Forsythe et al., 2014). Among the microorganisms
(bacteria, fungi, viruses) that make up the intestinal microbiome, the
bacteria are the most important (1014), mainly dominated by Firmicutes
and Bacteroidetes, as well as Actinobacteria and Proteobacteria phyla
(Thursby and Juge, 2017). Harmony between them has beneficial ef-
fects on host individuals including the production of vitamins, protec-
tion against pathogens and modulation of the immune system (Shreiner
et al., 2015). An imbalance in intestinal microorganisms, with an

increase in Firmicutes phylum and a decrease in Bacteroidetes phylum,
causes an adverse host response, provoking a phenomenon known as
dysbiosis (Shreiner et al., 2015). The gut microbiota dysbiosis has been
related to an increased susceptibility to intestinal, cardiovascular and
nervous pathologies. Thus, irritable bowel syndrome (IBS) is the con-
sequence of an inappropriate inflammatory response to intestinal mi-
crobes (Bonaz, 2013). Likewise, IBS patients have less Lactobacillus and
Bifidobacterium spp. and a 2- fold augmented ratio in the Firmicutes/
Bacteroidetes relationship in comparison to healthy subjects (Icaza-
Chávez, 2013; Kassinen et al., 2007; Rajilić-Stojanović et al., 2011).
Metabolic endotoxemia, an occurrence generated by systemic exposure
to certain compounds of bacterial membrane, has emerged as a cardi-
ovascular risk factor (Manco et al., 2010). Compelling evidence sup-
ports a correlation between excessive levels of Firmicutes and neu-
ropsychiatric disorders such as depression, bipolar disorder and
dementia (Huang et al., 2018; Naseribafrouei et al., 2014). Currently,
microbiome-based strategies, including prebiotics, probiotics and faecal
transplants, aim to promote eubiosis to encourage metabolic and
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mental health (Jia et al., 2018; Vigvári et al., 2018).
Furthermore, dysbiosis may be caused by a wide variety of factors,

including some environmental pollutants, fungicides, insecticides or
herbicides such as glyphosate, which is the focus of our work. N-
(phosphonomethyl) glycine, commonly known as glyphosate (Gly), is
the active compound in several formulations with surfactants, referred
to as Gly-based herbicides (GBH), e.g. Roundup®. Roundup® was de-
veloped in the 1970s as a broad-spectrum systemic herbicide to remove
weeds and shrubs from agricultural crops. This organophosphorus
compound penetrates the soil, posing a threat for soil microbial ecology
(Helander et al., 2018; Liu et al., 2018). Moreover, it has been con-
firmed that Gly has the capacity to contaminate aquatic ecosystems
(Peruzzo et al., 2008; Van Stempvoort et al., 2016). In addition, sub-
sequent studies have demonstrated harmful effects on growth, range of
movement and animals’ behaviour on the water surface and ground
water (Bridi et al., 2017; Frontera et al., 2011). It is argued that Gly is a
low risk compound for human health due to the absence of the shikimic
acid pathway in mammals, blocking the route for Gly. Nevertheless,
there is certain ongoing controversy because it has recently been de-
monstrated that it may provoke cellular alterations (Gasnier et al.,
2009; International Agency for Research on Cancer, 2015).

Human exposure might be possible through the ingestion of several
Gly-contaminated foods of agricultural origin. Given that traces of
herbicide have recently been found in formula milk, honey, cereal
grains or soy, human health might be compromised following Gly ex-
posure (Rubio et al., 2014). A current report has shown the presence of
glyphosate (95%) in most beverages for human consumption, from
agricultural crops, such as beer and wine, in concentrations ranging
from 51 ppb to 3.5 ppb (Cook, 2019). The gastrointestinal tract can
absorb a limited part of Gly, a minimal proportion (< 0.7%) of the
ingested dose. It is subsequently metabolised by hydrolysis to amino-
methylphosphoric acid (AMPA), its main metabolite, and the rest is
rapidly eliminated through urine and faeces (Brewster et al., 1991;
Williams et al., 2000). Despite this, the risk of human consumption of
Gly-containing foods is still being evaluated, especially in children and
during pregnancy. In this work, we state a possible link between Gly-
induced dysbiosis and cognitive and motor aggravations in neurode-
generative and neurodevelopmental pathologies, such as autism spec-
trum disorder (ASD). Hence, we review the negative impact that Gly-
induced dysbiosis may have on depression/anxiety, autism, Alzheimer’s
and Parkinson’s diseases

2. Gly mode of action

As mentioned previously, Gly, the main component of GBH, is an
essential compound for the farming industry, since it can eliminate
weeds in crops, thus improving performance and providing greater
economic benefits, according to some authors (Kraehmer et al., 2014).
In plants, all the primordial aromatic compounds that are involved in
primary metabolism of aromatic amino acids are created by the shiki-
mate pathway. The route of shikimic acid from glucose, discovered by
Bernhard Davis and others in 1956 (Herrmann, 1995; Srinivasan et al.,
1956), is responsible for the biosynthesis of fundamental aromatic
amino acids such as phenylalanine, tyrosine and tryptophan (Herrmann
and Weaver, 1999). Regarding Gly, the site of inhibiting action is in the
sixth step of the pathway, where the enzyme 5-enolpyruvylshikimate-3-
phosphate synthase (EPSP synthase) catalyses the reaction between
shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP), gen-
erating 5-enolpyruvylshikimate-3-phosphate (EPSP), an intermediary
that leads to the formation of chorismate, precursor of the three aro-
matic amino acids (Maeda and Dudareva, 2012; Zhan et al., 2018)
(Fig. 1). In addition, all three types of amino acids are precursors to a
large variety of secondary plant metabolites and the intermediates of
the main branch of the shikimate pathway also serve as starting points
for biosynthesis of secondary products (Herrmann, 1995).

The enzyme EPSP synthase has a monomeric structure and a

molecular mass close to 46 Kda. Furthermore, it is obtained by pur-
ification (Shuttleworth et al., 1992) and its 3D formation has been
confirmed by X-ray crystallography in Escherichia coli (Schonbrunn
et al., 2001).

EPSP synthase has two domains, whose intersection or interdomain
is located at Gly’s action site. The reaction is carried out through the
cleavage of the CeO bond, with the POe cleavage being normal in
almost all enzymes that have PEP as substrate. Gly is structurally si-
milar to PEP and competes with it to inhibit EPSP synthase in a slowly
reversible reaction. This enzyme is folded into two almost equal do-
mains, each of which comprises of three copies of a βαβαββ-folding
unit (Ribeiro Marques et al., 2007).

The two domains of the EPSP synthase approach each other, pro-
ducing a cavity in the interdomain. Gly binds near the S3P, almost
without disturbing the cavity of the active site, very similar to the en-
zyme-S3P complex. There is an interaction of hydrogen bonds between
the 5-hydroxyl group of S3P and the Gly nitrogen. In addition, there are
two further interactions between the substrate and the inhibitor,
through the side chains of Lys-22 and the water molecule W2. At the
Gly binding site (in both enzymatic domains), there are predominately
charged residues, such as Lys-22, Arg-124 and Lys-411, which are in-
volved in the PEP bond. Asp-313 probably acts as a proton acceptor,
whereas Lys-22 can protonate the oxygen of the scissile bond to support
the formation of inorganic phosphate (Schonbrunn et al., 2001). The
change of conformation between the open and closed state is thus due
to the S3P being joined in a first step, producing an accumulation of
positive charges in the cavity, having the capacity to attract negatively
charged molecules to the active site of the enzyme (PEP or Gly). Con-
sequently, Gly occupies the binding site of the PEP in a competitive
manner, rather than binding to the enzyme allosterically (Herrmann
and Weaver, 1999; Ribeiro Marques et al., 2007),

3. Glyphosate main toxic effects

A concern is emerging on the toxicity of Gly in humans, considering
that the majority of Gly and GBH’s effects have been observed in
mammals. It was shown that there is a direct relationship between in-
fertility and deformities in pigs, and exposure to Gly in high con-
centrations in the liver and kidney (Krüger et al., 2014b, 2014a). Suf-
ficient evidence confirms a correlation between an increase in the use of
Gly and a wide variety of human diseases. Investigations show harmful
outcomes including kidney damage, various types of cancer and neu-
rological and emotional diseases such as attention deficit hyperactivity
disorder, autism, depression, anxiety, Alzheimer's and Parkinson's dis-
ease (Van Bruggen et al., 2018). The International Agency Research on
Cancer (IARC), the specialised cancer organisation of the World Health
Organization (WHO), reclassified Gly as a probable carcinogen to hu-
mans (Group 2A) based on sufficient evidence of its carcinogenic nature
in experimental animals and limited evidence in humans (International
Agency for Research on Cancer, 2015). This potential role as a carci-
nogenic molecule has generated great discussion amongst researchers.
In fact, in 2016 the Joint FAO/WHO Meeting on Pesticide Residues
(JMPR) postulated that such a risk does not exist because its carcino-
genic effect in mice is produced at such high doses that would be im-
possible to reach in humans (FAO/WHO Joint Meeting on Pesticide
Residues, 2016). Nevertheless, several findings support and confirm
that Gly and GBH induce DNA damage in rodents treated with 400mg/
kg, as well as human cell lines at acceptable daily intake doses of
0,5 μg/ml. For example, there is an increase in the amount of micro-
nuclei cell and chromosomal aberrations in human lymphocytes and
stimulation of cell proliferation in the presence of Gly (Guyton et al.,
2015; Kašuba et al., 2017; Mañas et al., 2006; Santovito et al., 2018).
The idea that Gly could generate alterations related to the development
of tumours is reinforced by epidemiological studies which show that
occupational exposure to Gly considerably increases the prevalence of
Non-Hodgkin´s lymphoma and suggests a risk of multiple myeloma
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occurring (De Roos et al., 2005; Eriksson et al., 2008). In addition, its
exposure, from prenatal period to adulthood, induces endocrine effects
(Manservisi et al., 2019), as diverse studies have confirmed effects on
aromatase activity and reproductive alterations of Gly and GBH on
human cell lines and rat testis (de Liz Oliveira Cavalli et al., 2013;
Gasnier et al., 2009; Richard et al., 2005). Likewise, a proliferative
effect on the hormone-dependent T47D cell line in the presence of Gly
was found through activation of the estrogenic pathway
(Thongprakaisang et al., 2013). Nevertheless, the European Food Safety
Authority (EFSA) rejected the claim of Gly having hormonal disruption
properties (European Food Safety Authority, 2017). Moreover, the
European Union authorised its use for the next 5 years (European
Commision, 2017). Further to this controversy, it has also been sug-
gested that Gly can have a harmful effect on the bacterial enzymes of
the intestine, which involves the shikimate pathway (Aitbali et al.,
2018). Gly competitively inhibits EPSP synthase, blocking the forma-
tion of aromatic amino acids such as phenylalanine, tyrosine and
tryptophan, essential for cellular survival (Schonbrunn et al., 2001).

Gly was specifically designed to eliminate grass and weeds which
express EPSP. Similarly, yeast, algae, bacterial strains and fungi also
express EPSP, therefore glyphosate also affects them (Bode et al., 1984;
Cao et al., 2012; Du et al., 2000; Helander et al., 2018; Smedbol et al.,
2017). Conversely, this enzyme is absent in mammals, since they obtain
the three amino acids from diet, meaning a toxic effect of Gly through
the shikimate pathway is improbable. Chemical compounds that in-
terfere with the activity of EPSP synthase in this route are considered
“safe” for humans when handled in reasonable concentrations. How-
ever, there is emerging evidence of the harmful effect on gut microbiota
in animal models, suggesting Gly having a noxious role in human
homeostasis.

It has been largely proposed that Gly modifies the microorganism’s
composition in the gut by beneficial bacteria generating a gut microbial
imbalance or dysbiosis (Table 1). A decrease in the overall number of
intestinal bacteria has been reported after repeated oral ingestion of
both chronic and subchronic GBH doses in mice. Their gut microbiota
showed high levels of Firmicutes and Corynebacterium phylum in com-
parison with control animals (Aitbali et al., 2018). A similar study
proposes a relationship between sex and dysbiosis induced by Gly,
characterised by an increase in Bacteroidetes over Lactobacillus, princi-
pally affecting female rats (Lozano et al., 2018). Moreover, changes in
Firmicutes phylum has also been seen in rat pups after maternal ex-
posure to GBH through drinking water (Mao et al., 2018). Honeybees’
gut microbiota is also vulnerable to Gly, producing a weakening in
beneficial bacterial composition. The bacterial community is reduced in

the presence of Gly, making bees more susceptible to infection by Ser-
ratia, an opportunistic pathogen that promotes mortality (Motta et al.,
2018). Likewise, high levels of botulinum neurotoxin were found in the
rumen fluid of cow microbiota following the consumption of Gly-
treated water, as well as a reduction in Entodinium spp, Epidinium spp,

Fig. 1. Glyphosate mechanism of action inhibiting shikimic acid pathway.

Table 1
Altered intestinal microbiota following Gly and GBH exposure.

Model Exposition Changes in
microbiota
composition

References

Mouse Oral ingestion of
Gly and GBH

↑ Firmicutes spp.
↑ Corynebacterium
spp.
↓ Bacteroidetes spp.
↓ Lactobacillus spp.

(Aitbali et al.,
2018)

Rat Oral ingestion of
GBH

↑ Bacteroidetes spp.
↓ Lactobacillus spp.
(mainly on females)

(Lozano et al.,
2018)

Rat pup Maternal oral
ingestion of Gly
and GBH

↑ Prevotella genus
↑ Muscispirillum
genus
↓ Lactobacillus genus
↑ Aggregatibacter
genus

(Mao et al.,
2018)

Honey bee Oral ingestion of
Gly

↑ Guilliamella
apicola
↓ Snodgrasella alvi
↓ Bifidobacterium
↓ Lactobacillus

(Motta et al.,
2018)

Cow Oral ingestion of
Gly

↓ Entodinium
↓ Epidinium
↓ Ophryoscolex
↓ Dasytricha

(Ackermann
et al., 2015)

Enterococcus strains Incubation with
Gly and GBH

↓ Enterococcus spp. (Krüger et al.,
2013)

Poultry microbiota
in vitro

Incubation with
GBH

↑ Echerichia coli
↑ Salmonella
enteriditis
↑ Salmonella
typhiminium
↑ Salmonella
gallinarum
↑ Clostridia spp.
↓ Enterococcus
faecalis
↓ Enterococcus
faecium
↓ Bacillus badius
↓ Bacillus cereus

(Shehata et al.,
2013)
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Ophryoscolex spp and Dasytricha spp (Ackermann et al., 2015). How-
ever, changes in the microbial composition in the cow rumen have not
been discovered in another study (Riede et al., 2016). The presence of
Gly on strains of enterococcal isolated from horse and cattle induced
low levels of Enterococcus spp., related to an alteration in its inhibitory
role against Clostridium botulinum, causing diseases such as diarrhoea or
pseudomembranous colitis (Krüger et al., 2013).

Beneficial intestinal bacteria such as Enterococcus faecalis, E. fae-
cium, Bacillus badius and B. cereus were found to be sensitive to Gly,
whereas pathogenic bacteria such as Escherichia coli, Salmonella en-
teritidis, S. typhimurium, S. galliarum and the Clostridia species have
shown marked resistance to Gly in experiments on poultry microbiota
(Shehata et al., 2013). The mechanisms underlying their resistance are
yet to be ascertained. Herein, the different types of EPSP synthases
(class I and II) are noteworthy. The class I enzyme is found in many
bacteria and plants, while the class II enzyme has only been found in
some Gly-resistant bacteria. Both have a similar structure but a different
amino acid sequence. It has been suggested that the difference in var-
ious amino acid residues could lead to sensitivity to Gly in the class I
EPSPS, while the class II enzyme would be involved in resistance to this
herbicide (Li et al., 2009). Furthermore, it has been reported that mu-
tations in the class II EPSP synthase and the production of mycotiol, a
molecule involved in the detoxification of antibiotics, heavy metals or
aromatic compounds of Actinobacteria, may also be involved in Gly
resistance (Van Bruggen et al., 2018).

A striking case of voluntary ingestion of Gly was reported and in-
dicated a predisposition to the development of Clostridium tertium
bacteraemia in humans together with an effect on intestinal mucosa
(You et al., 2015). Few studies have been performed on Gly or GBH on
microbiota in mammals, but so far, all findings indicate an overgrowth
of Gly-resistant microorganisms such as Clostridium spp and possibly
several Salmonella strains (Krüger et al., 2013; Shehata et al., 2013).

4. Gly and microbiota-related disorders

It is worth emphasising that Gly directly induces neurotoxicity in
CNS. For instance, Gly and GBH generate biochemical, neurophysiolo-
gical and developmental cerebral deviations, such as changes in the
levels of monoaminergic neurotransmitters (Martínez et al., 2018),
generation of an oxidative environment (El-Shenawy, 2009), glutama-
tergic excitotoxicity (Cattani et al., 2017) and deformities (Paganelli
et al., 2010). These changes may be related to a disruption of the gut-
brain axis, as shown in both the preclinical and clinical studies re-
viewed below.

4.1. Preclinical findings

It is increasingly clear that a disturbance in the diversity and the
richness of gut microbes is strongly related to depression/anxiety by the
gut-brain axis. In fact, the transplantation of faecal microbiota from
depressed patients to rodents can provoke depression-like symptoms
(Kelly et al., 2016; Zheng et al., 2016). Germ-free mice exhibited an-
xiolytic behaviours compared with specific pathogen-free mice, ac-
companied by neurochemical shifts in the amygdala and dentate
granule layer of the hippocampus (Neufeld et al., 2011). In addition,
after a 7-day treatment with enrofloxacin in rodents, alteration of the
microbial composition was induced, causing aggressive behaviour
(Sylvia et al., 2017). Infection with pathogens such as Campylobacter
jejuni, Citrobacter rodentium or Trichuris muris increased anxiety-like
behaviours in animals (Bercik et al., 2010; Goehler et al., 2008; Lyte
et al., 2006). Moreover, oral exposure to GBH reduced the abundance of
Firmicutes, Corynebacterium, Bacteroidetes and Lactobacillus and it was
associated with the appearance of anxiogenic and depressive beha-
viours in mice (Aitbali et al., 2018). Depressive and anxiety-like dis-
orders have been associated with changes in the diversity and richness
of gut microbes in rats together with an increase in proinflammatory

cytokines (O’Mahony et al., 2009). Furthermore, neurochemical al-
terations were discovered following subchronic exposure to GBH in
rats’ offspring, such as glutamatergic overactivity and oxidative damage
in the hippocampus, which were associated with depressive behaviours
in adult offspring (Cattani et al., 2017).

Accumulating evidence indicates that bacterial-wall compounds
participate in the neuropathological changes of ASD. For instance, li-
popolysaccharides (LPS) are glycolipid endotoxins anchored in the
outer cell wall of Gram-negative enterobacteria which are released into
intestinal lumen during multiplication or lysis processes (Alexander and
Rietschel, 2001). It is well-established that LPS binds to LPS binding
protein (LPB) or CD4 to activate TLR4, triggering an increase in NF-KB
activity, which induces the transcription of inflammatory signalling and
immune-related genes in different tissues. Besides the effect of cyto-
kines, it has been suggested that LPS is also able to reach the brain
minimally by crossing the blood-brain barrier (Banks and Robinson,
2010; Zhou et al., 2014) or by modulating afferent vagal fibres (Hansen
et al., 2000). Concerning the present review, Clostridium is resistant to
Gly, so it is not implicated in LPS-induced cerebral toxicity, because it
belongs to the Gram-positive bacteria group. E. coli, S. enteritidis, S.
typhimurium and S. galliarum, which are significantly elevated in the
presence of Gly in the poultry gut (Shehata et al., 2013), may be in-
volved in the predisposition to brain dysfunction by LPS in their cellular
walls. In rats subjected to oral ingestion of LPS, an increase in anxiety-
like behaviours was discovered (Fields et al., 2018). Consequently, the
reconstitution of intestinal microbiota through treatment with Lacto-
bacillus reuteri and Bifidobacterium adolescentis decreased depressive and
anxiety-like symptoms in stress-induced mice displaying anxiety/de-
pression (Jang et al., 2019; Kantak et al., 2014).

Disruption of faecal mucosa induced by rotenone was found in the
mouse model for Parkinson´s disease (PD) with a lower ratio of
Firmicutes/Bacteroidetes than in the control group (Perez-Pardo et al.,
2018). Another study showed how phylum Firmicutes decrease and
phylum Proteobacteria increase in PD mice along with a marked aug-
mentation of bacterial metabolites. In these PD animals, faecal micro-
biota transplantation diminished the motor impairment and microglial
activity of substantia nigra (Sun et al., 2018).

The role of intestinal microbiota was also related to the pathogen-
esis of Alzheimer´s disease (AD), mainly by neuroinflammatory me-
chanisms. Bacterial faecal composition changed in Aβ precursor protein
(APP) transgenic mice with an increase in a genus of Rikenellaceae and a
reduction in the proportion of Akkermansia and Allobaculum (Harach
et al., 2017). The administration of probiotics such as Lactobacillus and
Bifidobacterium improved memory, behavioural deficits and mitigated
the Aβ plaque formation in AD rodent models (Athari Nik Azm et al.,
2018; Kobayashi et al., 2017). All in all, these findings suggest that
compositional problems associated with the intestinal microbiota may
be triggers for behavioural disorders.

4.2. Clinical findings

Regarding depression/anxiety, the clinical data so far correspond
with the results observed in animals concerning the relationship be-
tween gut microbiota and these disorders. Depressive patients both
resistant and non-resistant to the treatment, presented alterations of the
intestinal composition with a marked reduction in Firmicutes,
Bacteroidetes and Proteobacteria compared with healthy individuals
(Jiang et al., 2015; Kelly et al., 2016). Combined administration of
probiotics containing Lactobacillus helveticus and Bifidobacterium longum
had anti-depressive and anxiolytic effects in comparison with the non-
treated group (Messaoudi et al., 2011). As shown in section 2, Gly can
provoke several emotional diseases (Van Bruggen et al., 2018) as well
as intestinal dysbiosis. One possibility is that these changes in gut
bacterial composition may generate alterations in the production of
short-chain fatty acids (SCFA) in the intestinal lumen. SCFAs such as
butyric (BA), propionic (PPA) or acetic acid (AA) are metabolites
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derived from the bacterial fermentation of dietary fibre and play a
variety of roles in health maintenance, not only on the intestine itself as
an energy source improving transit, but also in supporting the immune
system (Wichmann et al., 2013). Moreover, unsuitable levels of SCFA
have been suggested as predisposing factors to suffering from neu-
ropsychiatric diseases (MacFabe et al., 2007; Zhang et al., 2017).

It was also found that Gly severely depletes manganese (Mn) levels
in plants. Glyphosate's disruption of Mn homeostasis selectively affects
Lactobacillus and can lead to several disorders such as PD (Samsel and
Seneff, 2015). In fact, there is an increase in the incidence of PD in
urban areas with a higher industrial release of manganese (Willis et al.,
2010), and there is some accidental exposure to Gly that causes
symptomatology related to PD (Barbosa et al., 2001). Although the
mechanism remains unclear, it could be related to dysbiosis. Intestinal
dysbiosis and increased permeability in PD patients cause an im-
munological stimulation, whereas the activation of enteric neurons by
microbiota-derived metabolites may contribute to the initiation of in-
correct α-synuclein folding (Caputi and Giron, 2018; Poirier et al.,
2016). Moreover, a correlation was found between metabolites from
intestinal microorganisms and the development of symptoms in autistic
patients during a situation of dysbiosis (Roman et al., 2018). In this
regard, an interrelation between Clostridium bacteria’s colonization of
the intestinal tract and autism has been demonstrated (Argou-Cardozo
and Zeidán-Chuliá, 2018).

Human gut dysbiosis is also linked to the aetiology of AD in animals
exposed to Gly, where there is an imbalance in the intestinal bacterial
composition. AD patients showed a reduced level of both Firmicutes and
Bifidobacterium and an increase in Bacteroidetes (Vogt et al., 2017).
Moreover, a correlation was noted between an abundance of Escherichia
and Shigella in the guts of AD individuals and brain amyloidosis and
behavioural impairment (Cattaneo et al., 2017). Additionally, elevated
levels of LPS have been found in the brain and in plasma of patients
with AD (Zhan et al., 2016; Zhang et al., 2009).

Additionally, Gly exposure has recently been associated with an
increase in coeliac disease, probably owing to the reduction in levels of
Lactobacillus and Bifidobacteria and to the p-cresol toxicity (Samsel and
Seneff, 2013). It was also revealed that p-cresol and 3-[3-hydro-
xyphenyl]-3-hydroxypropionic acid (HPHPA), another Clostridia phe-
nolic metabolite, used as a urinary marker in ASD-children (Shaw,
2010; Xiong et al., 2016), inhibit dopamine-beta-hydroxylase, which
converts dopamine to noradrenaline (DeWolf et al., 1988; Goodhart
et al., 1987). Consequently, a positive correlation between the use of
Gly and ASD was proposed. The suggested mechanism was similar to
Parkinson´s disease, in that the overproduction of metabolites from
Clostridium spp. provokes an excess of dopamine and its metabolites,
generating ROS through formation of dopamine quinone species,
leading mitochondrial dysfunction and oxidative stress (Shaw, 2017).

The developing healthy population is considered to be one of the
most vulnerable to environmental pollutants because they do not have
fully developed immune, digestive and neurological systems. Exposure
to any contaminant from air, water or soil might cause damage to their
physical or mental development, which is attributable to Gly. Children
may consume Gly in breakfast cereals, causing gut microbial dis-
balance. The idea that Gly is able to induce dysbiosis in young in-
dividuals is compounded in experiments on mammals. Although there
are few studies, a disturbance in bowel microorganism levels was noted
after exposure to Gly that induced an increase in anxiety and depres-
sion-related behaviours (Aitbali et al., 2018). Gastrointestinal symp-
toms present in autistic children have been related to an intestinal
microbiome alteration showing high levels of pathogenic bacteria and
gastrointestinal problems (Roman et al., 2018). Evidence of correlations
between neurodevelopmental disorders and Gly perinatal exposure
were reported in pregnant rodents treated with Gly (Yu et al., 2018),
where processes of enzymatic disruption (Daruich et al., 2001; Gallegos
et al., 2018) and induction of glutamate release emerged in offspring
(Cattani et al., 2014).

It is well known that autistic children’s gut microbial density differs
to that of healthy children, with a decrease in the beneficial bacterial
group, Bifidobacterium (De Angelis et al., 2013). Recent findings in-
dicate a close connection between metabolites from gut microbiota and
autistic disorders. Thus, perinatal exposure to LPS was revealed as risk
factor in the presence of ASD in progeny (Knuesel et al., 2014) and the
presence of p-cresol in faeces or urine is used as marker of ASD (Altieri
et al., 2011; Gabriele et al., 2016). However, it is still unclear whether a
bacterial imbalance is produced after the appearance of ASD or it is a
trigger in the symptomatology of this pathology.

Finally, relating to most studies, the main limitation is the use of
high doses of Gly or GBH, which is difficult to obtain in mammalian
tissues, calling into question clinical relevance. Additionally, it has been
suggested that the harmful effects of Gly may be due to the adjuvants in
formulations of GBH like Roundup®, among others. For instance, in
order for Gly to penetrate the plant cell, the presence of surfactants,
such as polyoxyethyleneamine, which exhibits a potent cytotoxic effect,
is essential (Defarge et al., 2018). In line with this, many investigations
have been conducted with Gly instead of commercial formulations
based on Gly.

To our knowledge, the lack of information, contradictory data and
independency of studies have generated controversy concerning the
safety of Gly for humans. Despite the usage of Gly being permitted, its
indiscriminate utilisation may have a harmful effect on human health.
We have assessed the mechanisms by which a Gly-induced intestinal
microbiome disturbance could be involved in emotional disorders and
neurological diseases such as ASD. However, more research is certainly
required to expound the role of Gly on the gut’s bacterial community
and its outcomes in neurobehavioral diseases. Moreover, owing to a
lack of existing literature, future research should evaluate the role of
innovative approaches such as the utilisation of NAC, vitamin C, vi-
tamin E, cyclophosphamide or probiotics to treat herbicide poisoning
(Cherukuri et al., 2014).
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