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Abstract
The herbicide glyphosate is widely used to control weeds in grain crops. The overuse of glyphosate has induced issues such as 
contamination of surface water, decreased soils fertility, adverse effects on soil microbiota and possible incorporation in food 
chains. Here we review biochemical, agricultural, microbiological and analytical aspects of glyphosate. We discuss uptake, 
translocation, toxicity, degradation, complexation behaviour, analytical monitoring techniques and resistance emergence in 
crops. We provide data of glyphosate toxicity on different ecosystems. Experiments reveal that excessive glyphosate use 
induces stress on crops and on non-target plants, and is toxic for mammalians, microorganisms and invertebrates. The long 
half-life period of glyphosate and its metabolites under different environmental conditions is a major concern. Development 
of analytical methods for the detection of glyphosate is important because glyphosate has no chromophoric or fluorophoric 
groups.
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Introduction

Glyphosate [N-(phosphonomethyl) glycine], CAS Number: 
1071-83-6, is one of most widely used herbicide worldwide 
since 1971 (Morton and Edwards 2005; Myers et al. 2016; 
Conrad et al. 2017). Glyphosate is derived from phosphonic 
acid and glycine (Table 1). It controls and eradicates grasses 
and broad-leaved weeds in crops (Mazzei and Piccolo 2012; 
Williams et al. 2016; Tarazona et al. 2017; EFSA 2017). It 
was first synthesized and commercialized by a Pharmaceuti-
cal Company of Switzerland in 1950, but its herbicidal prop-
erties were studied by John. E. Franz of Monsanto Company 
under trade name Roundup (Dill et al. 2010; Gill et al. 2018). 
Glyphosate is a polyprotic molecule having three polar func-
tional groups (phosphonate, carboxyl and amino group) and 
half-life ranges from 2 to 215 days in soil and 2–91 days in 
aquatic medium (Battaglin et al. 2014; Maqueda et al. 2017).

The major product formed during the glyphosate degra-
dation is aminomethylphosphonic acid (AMPA). The half-
life times of glyphosate and AMPA is variable in different 
systems (soil, water, air) and ranges between few days to 
one or two years. The half-life primarily depends on envi-
ronmental and edaphic conditions, such as soil moisture 
and temperature (EFSA 2013, 2017; Bento et  al. 2016; 
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Silva et al. 2018). As per the data of European Food Safety 
Authority (EFSA), in soils, the half-life time for glyphosate 
and AMPA was 143.3 days and of 514.9 days, respectively 
(EFSA 2013). In sea water, the half-life for glyphosate at 
25 °C in low light was 47 days, while in dark at 25 °C the 
half-life increases to 267 days, and in the dark at 31 °C the 
half-life was found to be 315 days. In dark at 31 °C, glypho-
sate is found to persist maximally. Detection of AMPA (the 
microbial transformation product of glyphosate) under all 
conditions confirmed that degradation was mediated by the 
native microbial community (Mercurio et al. 2014). The 
half-life period of glyphosate and AMPA were numerically 
assessed for a vineyard and a wheat field in the Po Valley, 
Italy by la Cecilia et al. (2018). The Calculation of the Haz-
ard Quotient suggested that glyphosate and AMPA can pose 
a risk of aquifer contamination in the top 1.5 m depth within 
50 years of GLP use. There is a long debate on the toxicity 
and carcinogenicity of glyphosate, and based upon the avail-
ability of authentic data, it was found suitable for agricul-
tural use every time. As per literature data and experimental 
evidence provided by the glyphosate manufactures, it is not 
considered to be persistent organic pollutants (POPs), per-
sistent, bioaccumulative and toxic (PBT), and very persistent 
and very bioaccumulative (vPvB) chemical (Link 1 and 2). 
Based on its physicochemical and structural properties, it 
does not fall under the category of POP, PBT and vPvB. 
Use of glyphosate at a recommended dose level has shown 
its proper utility and best applications. Only few studies have 
been reported on the long persistence of glyphosate, which 
is not enough evidence to declare it as a non-suitable herbi-
cide for agricultural uses (EFSA 2013, 2017; Mercurio et al. 
2014; Bento et al. 2016; Silva et al. 2018).

The maximum acceptable daily intake of glyphosate in 
drinking water is 0.9 mg/L (Schriks et al. 2010) and per kg 

body weight is 1.75 mg/kg (Myers et al. 2016). Few stud-
ies revealed the level of glyphosate as high as 1.42 μg/L 
in groundwater of Ich-EK and 0.47 μg/L in urine samples 
of the farmers of the Francisco J. Mujica communities 
(Rendón-Von Osten and Dzul-Caamal 2017). Cell mani-
festation and glyphosate accumulation declined the uptake 
(Kutman et al. 2013) and translocation proficiency (Ou et al. 
2018), for which plants developed resistance either by inher-
itance or genetic modification (Coupe and Capel 2016). The 
International Agency for Research on Cancer (IARC) clas-
sified herbicide glyphosate in Category ‘2a’ which specifies 
glyphosate to be carcinogenic to humans (McClellan 2016). 
The USEPA has classified glyphosate as a ‘Group E’ carcin-
ogen, which means it has ‘evidence of non-carcinogenicity 
for humans’ (Temple 2016), whereas European Food Safety 
Authority (EFSA) also specified that glyphosate poses to be 
a carcinogenic hazard to humans. The evidence from experi-
mental studies does not support this conclusion in relation to 
its carcinogenic potential (Portier et al. 2016).

Glyphosate accounts for the most consumed pesticide in 
the USA and accounts for approximately 72% of worldwide 
usage (Myers et al. 2016). In European countries, Germany 
and Denmark, 35–39% of the agriculture relies on glypho-
sate (Steinmann et al. 2012) and in Argentina, 180–200 
million tonnes of glyphosate is consumed annually (Ned-
elkoska and Low 2004). In India, 960 tonnes of glyphosate 
is consumed annually with an annual increase of 38.5% 
(Ministry of Chemicals and Fertilizers (Department of 
Chemicals and Petrochemicals) 2014–2015). Sabero Organ-
ics Ltd. (Gujarat) is the leading manufacturer of glypho-
sate with 21.45% of total production in India (Ministry of 
Chemicals and Fertilizers (Department of Chemicals and 
Petrochemicals) 2012–2013). The production of glyphosate 
in India decreased from 1700 metric tonnes to 960 tonnes 

Table 1  Chemical and physical characteristics of glyphosate and its metabolites

General Name IUPAC name Chemical formula MW (g/mol) Solubility in 
water (g/L)

Log P (at 25 °C) Density (g/cm3) Henry’s law 
constant 
(Pa m3 mol−1)

Glyphosate 2-(phosphonometh-
ylamino)acetic 
acid;propan-2-
amine

C6H17N2O5P 228.185 12 − 5.4 1.7 2 × 10−12

Aminomethylphos-
phonic acid

– CH6NO3P 111.04 50 0.4 1.6 –

Sarcosine N-methylglycine C3H7NO2 89.093 89.09 − 2.8 1.093 2.47 × 10−9

Glyoxylate Glyoxylic acid C2H2O3 74.035 224 − 0.07 1.384 3 × 10−9

Formylphosphonate Formylphosphonic 
acid

CH3O4P 110.005 24.8 − 1.8 1.79 7.37 × 10−8

Methylamine Méthanamine CH5N 31.057 100 − 0.57 0.693 –
Glycine 2-Aminoacetic acid C2H5NO2 75.066 249.9 − 3.2 1.61 –
Formaldehyde – CH2O 30.011 400 1.2 0.815 –
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between the year 2009 and 2012 (Ministry of Chemicals 
and Fertilizers (Department of Chemicals and Petrochemi-
cals) 2012–2013). Globally, the share of total use of glypho-
sate among other herbicide during 1974–2014 was 1.5%, 
which increased to 71.6% from 2005 to 2015 (Benbrook 
2016; Kaur et al. 2017). Similar trends were noticed for the 
applications of glyphosate in India and the USA. The global 
herbicide market was $23.97 billion in 2016 and is estimated 
to reach $34.10 billion by 2022, at a growth rate of 6.05% 
for the forecasted period (Benbrook 2016). It was partially 
banned in Sri Lanka (Copping 2014; Sirinathsinghji 2014), 
Argentina (Ho 2010; Arancibia 2013), Malta (Redbond 
2016) Brazil, Colombia, France (Green and Owen 2011) 
and Netherlands (Sirinathsinghji 2014) because of its per-
sistence in surface and soil sediments (Peres-Oliveira et al. 
2016; Bento et al. 2016).

Glyphosate is used in two broad ways (i) direct use: used 
in agriculture under different formulations and various salt 
compositions (Benbrook 2016; Kaur et al. 2017). After its 
introduction to the world market (since 1974), a 15-fold 
increase has been noticed in the production and consump-
tion of this herbicide (Benbrook 2016). The corresponding 
share globally is 72%. (ii) indirect use: used in genetically 
modified crops (Benbrook 2016; Kaur et al. 2017). Fifty-
six percentage of global glyphosate use include genetically 
engineered herbicide-tolerant crops.

This review discusses various aspects of uptake, translo-
cation, resistance emergence in crops, analytical monitoring, 
toxicity and degradation of glyphosate.

Uptake and translocation of glyphosate 
in plants

The efficacy of the herbicides depends upon its dosage, 
which gets translocated to the subsistence parts of the plant 
(Gomes et al. 2014; Sammons and Gaines 2014; Kvesitadze 
et al. 2016). Glyphosate is one such broadspectrum herbi-
cide which aids in regulating the plants when dispensed in 
the appropriate amount (Baird 1971; Caseley and Coupland 
1985; Monaco et al. 2002; Dill et al. 2010). For the last 
40 years, translocation of the effective dose of glyphosate in 
40 different weeds has been studied to determine the uptake 
efficiency and translocation extent of the herbicide. The 
first study provides insight about the mechanism, by which 
the phloem aids in the translocation of the glyphosate to 
the meristematic portion of the roots and other parts of the 
plant (Sprankle et al. 1973; Dill et al. 2010). This move-
ment of glyphosate via phloem assisted in linking the role of 
environmental conditions with translocation efficiency and 
plant development. This information is well encompassed in 
a book entitled “The Herbicide Glyphosate” (Caseley and 
Coupland 1985). Shikimic acid accumulation was found to 

be the major cause of EPSPS inhibition (Steinrücken and 
Amrhein 1980), which also aids in assessing the toxicity 
of glyphosate (Singh and Shaner 1998). Translocation and 
uptake are two different mechanisms, but both are studied 
mutually. Translocation encompasses the assessment of 
dosage for evaluating the distribution ratio, whereas uptake 
focuses on the drop size plus concentration of solute (Dill 
et al. 2010). The major enigma of the uptake mechanism is 
to relate the concentration and volume during the delivering 
of the desired dose (Feng et al. 2000). During hand applica-
tion, it is impracticable to sustain the desired dose, as drop 
size is too small and in abundance (Dill et al. 2010). Subse-
quently, during experimentation the drop volume is small/
large which disfigures the ratio of herbicide/surfactant/car-
ries volume and shatters the opportunity to comprehend the 
proficiency of spray solution penetration (Feng et al. 2000). 
Thus, understanding the penetration mechanism has enabled 
us to optimize the herbicide formulation, in which herbicide 
gets transported through cuticle towards the apoplast, which 
subsequently reaches the symplast, where phloem transfers 
it to rest of the plant (Dill et al. 2010). Several independent 
factors such as type of surfactant as well as its concentration, 
ionic strength and salt concentration, droplet size and droplet 
spread, cuticle composition plus the thickness, humidity, and 
most significantly, the concentration of glyphosate regulate 
the uptake mechanism (Dill et al. 2010). In assessing these 
decisive factors, extensive studies are conducted by employ-
ing the ideal nozzle as well as a carrier (Prasad and Cadogan 
1992; Feng et al. 2000). Moreover, inconvenience is encoun-
tered during the delivery of precise dose to leaf intercept via 
spraying, which leads to the assessment of the proficiency 
of leaf intercept. The concentration of herbicide, drop size 
and the surfactant has no cytology impact over leaf surface 
which can be linked to uptake efficiency (Feng et al. 2000). 
The excessive accumulation of surfactant/large surface area 
of cuticle offers the macro-drops to cease the active site and 
hastily discontinues loading via the phloem. Droplet genera-
tor aids in establishing the link among the drop size and con-
centration/penetration (Prasad and Cadogan 1992). Herbi-
cide in small drops has resolved the size factor, and further, 
it exhibited a very less deteriorating effect on the epidermal 
tissue (Ryerse et al. 2004) by evading the transport inhibi-
tion because of cell injury. To verify the concept of soak-
ing of minute spray droplets,  D2O (deuterium oxide) was 
employed, in which surfactant forms a network which aids 
the herbicide to invade the cuticle as quantified by measur-
ing the  D2O amount in leaf (Feng et al. 1999). The advent 
of genetic resistant corn permitted the assessment of local 
droplets, herbicide toxicity, surfactant damage associated 
with drop size, which is retained less, and more efficiently 
load the glyphosate which results in enhanced translocation. 
Further, 14C-glyphosate experimentation creates the ideal 
field environment and concurrently aids in understanding 
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the uptake mechanism plus characteristics (Feng et al. 2000, 
2003b; Feng and Chiu 2005). The efficiency of transloca-
tion considerably gets affected via glyphosate toxicity which 
initiates additional absurdity that initially optimizes the 
translocation but with time it increases its toxicity. Nega-
tive effects of minute dosage can be visualized on meris-
tems, as different tissues have a discrete cytological effect 
(Feng et al. 2003b). Toxicity regulates glyphosate efficiency 
as well as the distribution pattern. Various studies preferred 
the movement from the source towards sink confirmed by 
the sugar-beet model (Dewey 1981; Gougler and Geiger 
1981) which at the end downgrades the photosynthesis and 
limits the rate of translocation (Geiger et al. 1986; Geiger 
and Bestman 1990). These analysed conundrums indicate 
that measuring the over-sprayed glyphosate translocation 
value is a hazardous practice. As it will primarily depend on 
sink strength, toxicity and indefinite amount of glyphosate 
which as a result restrain its translocation within the plant 
(Dill et al. 2010). As translocation studies promptly focus on 
the amount, one can use the specific dosage for a particular 
location (Feng and Chiu 2005). Moreover, the higher the 
uptake rate, superior is the process since its small amount 
will reach the sink and induce self-limitation route which 
eventually ceases the translocation revealing the relationship 
among sink and source (Dill et al. 2010). Comparing wild/
sensitive-type of crops with GR (glyphosate-resistant) crops, 
it is delineated that GR facilitates in the parting of physi-
cal barriers such as cuticle, cell wall/membrane (Feng et al. 
2003b; Feng and Chiu 2005). When the GR crops were una-
vailable, the ultra-low dosage is used which does not affect 
the uptake as well as translocation, which is demonstrated 
by resistant-horseweed (Feng et al. 2004). Studying the 
sensitive and resistant crops below the toxic level unravels 

the impact the physical activity incurs on translocation and 
partitioning process, affirmed by ryegrass and horseweed 
(Lorraine-Colwill et al. 2002; Feng et al. 2004; Powles and 
Preston 2006), whereas equal translocation is observed in 
Palmer amaranth (Culpepper et al. 2006; Sammons et al. 
2007). Equal translocation works on a different principle 
which makes the crop self-sustainable, which is demon-
strated by GR soybean which limits translocation towards 
apical meristem but equally translocate the herbicide in 
leaves and other tissues, implying apoplast unloading. In 
order to remove the source perception, there is a need for 
the cessation of source–sink linkage (Sammons et al. 2007). 
Apoplastic unloading is a new concept which changes the 
perception of source–sink linkage; the superficial move-
ment from the source towards sink impersonates numerous 
prospects to illuminate symplastic regulation in addition to 
apoplastic movement.

Mechanistic action of glyphosate in plants

Glyphosate and aminomethylphosphonic acid (AMPA), 
which is a metabolite of glyphosate, is translocated to the 
leaves by two processes, in which first they penetrate through 
the cuticle and subsequent uptake via symplast (Monquero 
et al. 2004). Generally, symplast allows the entry either by 
endogenous carrier system (Burton and Balke 1988) or pas-
sive diffusion (Gougler and Geiger 1981), which depends on 
the attributes like the amount of herbicide, environmental 
factors and plant species (Fig. 1).

This uptake process is hindered by various environmental 
factors such as humidity and moisture of soil, cuticular wax 
synthesis, hydration and mineral assimilation (Franz et al. 
1997; Sharma and Singh 2001). Glyphosate in the form of 

Fig. 1  Metabolism and adsorp-
tion of glyphosate and amino-
methylphosphonic acid (AMPA) 
in plants
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roundup formulation once penetrated and translocated accu-
mulates at meristematic as well as actively dividing sites like 
root and shoot apices, tubers, rhizomes and young leaves, 
which act as a sink and amend normal life cycle of plants 
(Satchivi et al. 2000; Monquero et al. 2004; Cakmak et al. 
2009). This was validated by 14C glyphosate absorption in 
Abutilon theoprasti (Feng et al. 2003a). Moreover, exudation 
of translocated glyphosate from roots is a major problem as 
it constrains the progression of adjoining plants and seeds 
as observed in GR Glycine max, i.e. soybean (Kremer et al. 
2005). Some studies reveal the glyphosate functions by cap-
turing the active sites of the enzyme phosphoenolpyruvate 
by imitating the intermediate enzyme–substrate complete 
by using X-ray crystallographic techniques (Schönbrunn 
et al. 2001). Other studies also reported about inhibition of 
non-targeted plants like Chenopodium quinoa (Laitinen et al. 
2007; Gravena et al. 2012).

Further, it was proposed that glyphosate gets disin-
tegrated to AMPA, which is also taken up from the soil 
and translocated to the active site from the xylem pas-
sage to shoot apices. Moreover, extensive research needs 
to be done to know about AMPA and its phytotoxic influ-
ence on GR crops (Reddy et al. 2004). Glyphosate affects 
normal plant growth by debilitating the Shikimate pro-
cess (Corrêa et  al. 2016). It hampers the production of 

5-enolpyruvylshikimate-3-phosphate synthase, an enzyme 
which supports the synthesis of essential amino acids 
(Gomes et al. 2014), Fig. 2.

5-Enolpyruvylshikimate-3-phosphate synthase is respon-
sible for the biogenesis of chorismate, which is an important 
intermediate in the synthesis of aromatic amino acids, phe-
nylalanine, tyrosine and tryptophan (Salman et al. 2016). 
Deficiency of this enzyme leads to senescence and death 
by affecting the metabolic functions of the plant (Mahen-
drakar et al. 2014). Glyphosate strongly binds on soil min-
eral impeding the availability of micro- and macronutrients 
uptake in plants (Mertens et al. 2018). Another method of 
glyphosate translocation in plants and other tissues is desic-
cation. A cyclic disorder of photosynthesis causes drying 
of plants. This process commences with closing stomatal 
part following limited respiration process. For better under-
standing the mechanism of glyphosate better, it is impor-
tant to throw light on the translocation route of glyphosate 
in the plant (Helander et al. 2012). Glyphosate enters the 
plants through the cuticles of leaves (Gravena et al. 2012). 
It moves through the phloem to the tissues like bulbs, tubers 
and roots, ultimately affecting the meristems, storage organs, 
young roots, leaves and other growing tissues of the plant 
(Nguyen et al. 2016). The efficient action of glyphosate 
is attributed to its excellent uptake by the plant, brilliant 

Fig. 2  Mechanistic action of glyphosate
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translocation to meristems, partial degradation and slow 
mode of action (Helander et al. 2012; Nguyen et al. 2016).

The emergence of glyphosate‑resistant (GR) crops

The swift implementation of glyphosate-resistant (GR), or 
“Roundup Ready”, cropping systems has had a histrionic 
effect on agriculture to utilize glyphosate as a post-emergent, 
broadcast herbicide worldwide (Battaglin et al. 2014; Myers 
et al. 2016). Few resistant crops cultivated worldwide are 
Brassica napus (canola), Glycine max (soybean), Gossypium 
hirsutum (cotton) and Zea mays (maize) (Cerdeira and Duke 
2006; Beckie and Owen 2007), which have influenced the 
economy by increasing the seed cost, reduced herbicide cost, 
enhanced crop yield and better profitability (Green 2011; 
Schütte et al. 2017). The few advantages such as low cost 
and limited erosion of topsoil prompted the sustainability 
and increased the GR technology (Duke and Powles 2009). 
Recent studies reveal that there was little or no risk or direct 
impact when transgenes of glyphosate resistance were intro-
duced into wild-type populations.

The mechanism involved in the evolution of GR 
crops

The mechanism deduced for generating resistance involves 
five mechanisms: (i) alteration/mutation at the targeted site 
which induces complete/partial inhibition, (ii) deactiva-
tion of metabolic pathway, (iii) reduce uptake/translocation 
ability, (iv) compartmentation/sequestration and (v) over-
expression/amplification of the targeted gene (Nandula et al. 
2017). The extensive research permitted us to acquire better 
insight into the functioning of the plant and its retort to envi-
ronmental stimuli under stress (Sammons and Gaines 2014). 
Development of GR crops was induced because of different 
traits like cross-pollination, genetic diversity, prolific pro-
duction of seeds and dispersal of seeds over an extended 
area (DeVore et al. 2012). Plants were transformed (i) by 
incorporating the 5-enolpyruvylshikimate-3-phosphate syn-
thase gene to attain resistant plant as its over-expression aids 
in enzyme stability (Lorentz et al. 2014). Agrobacterium sp. 
strain CP4, from which glyphosate-resistant EPSPS enzyme 
is isolated, has shown the high success rate in generating 
resistant plant (Imran et al. 2017). Generation of resistance 
in weeds provides more insight for understanding the physi-
ological mechanism related to glyphosate resistance. The 
elevated level of 3-deoxy-d-arbino-heptulosonate 7-phos-
phate synthase, which is the first enzyme involved in the 
shikimate pathway, proposed to be responsible for enhanced 
carbon flow which further assisted is imparting the glypho-
sate resistance (Pline-Srnic 2006). (ii) Glyphosate oxidore-
ductase (GOX) is produced by soil microbes breaks the N–C 
bond of glyphosate and yields aminomethylphosphonic acid 

which is acetylated by glyphosate N-acetyl transferase (gat) 
producing gene which deactivates the action of glyphosate 
(Hadi et al. 2013). The third mechanism to generate the 
glyphosate-resistant plants, used commercially, involves the 
insertion of the amended EPSPS gene (Fig. 3).

Alteration of EPSPS gene can be done either by an amino 
acid substitution or site-directed mutagenesis which imparts 
resistance to crops (Pline-Srnic2006). CP4 genes of Agro-
bacterium sp. were utilized to disguise glyphosate-resistant 
5-enolpyruvylshikimate-3-phosphate synthase. Similarly 
genes of Ochrobactrum anthropi were used to evaluate 
glyphosate resistance in Canola plants (Padgette et al. 1996). 
Also, to introduce glyphosate resistance in maize plants, 
genetic mutations in maize genes were performed (Vande 
Berg et al. 2008). With the introduction of these customized 
transgenic plants in agriculture, the usage of glyphosate has 
expanded multitudinous. The prolonged exposure to glypho-
sate directed the development of resistant weeds like Buck-
horn Plantain, Common Ragweed, Common Waterhemp, 
Giant Ragweed, Goose-grass, Hairy Fleabane, Horseweed, 
Italian Ryegrass, Johnson-grass, Jungle Rice, Kochia, Liver-
seed Grass, Palmer Amaranth, Ragweed Parthenium, Rigid 
Ryegrass, Sour-grass, Sumatran Fleabane and Wild Poinset-
tia among the crop, by adapting to a fatal dosage for wild-
type (Nandula et al. 2005).

Toxicity of glyphosate

Indiscriminate use of glyphosate not only adversely affects 
the non-target crops but also presents health risks to non-
target animal species found in terrestrial and aquatic eco-
systems. United States Environmental Protection Agency 
(USEPA) classifies glyphosate in toxicity class of IV for 
inhalation and oral exposure (Qaim and Traxler 2005; Gill 
et al. 2017). It causes irritation, vomiting, nausea and photo-
contact dermatitis in humans (Reddenna and Krishna 2013) 
and is known to be slightly toxic for amphibians (Babalola 
and Van Wyk 2018) and fishes (Blann et al. 2009; Alcántara 
de la Cruz et al. 2016). Based on data available on toxico-
logical area, glyphosate doesn’t disrupt endocrine function 
through steroidogenesis, androgen or oestrogen mode of 
action (EFSA 2017). It is excreted in urine and faeces and 
does not bio-accumulate in animals. However, some reports 
cite the bioaccumulation of glyphosate in breast milk. But 
glyphosate concentration was found to be inconsistent with 
the animal toxicokinetic data which demonstrated that 
glyphosate has low distribution and is rapidly cleared from 
the body and does not cause any bioaccumulation in breast 
milk (Bus 2015).

Toxicity profiles of glyphosate against non-target plant 
species, microorganisms, lower invertebrates, higher verte-
brates and humans are presented in Fig. 4 and Table 2.  
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(a) Effect on non-target plant species

Impact of glyphosate has been studied on following non-
target plant species viz. Pisum sativum (Orcaray et al. 2012; 
Zabalza et al. 2017), Oryza sativa (Ahsan et al. 2008), B. 
Japonicum (Hernandez et  al. 1999), Tritium aestivum 
(Miteva et al. 2010), Zea Mays (Zablotowicz and Reddy 

2007). Glyphosate has been shown to influence photosyn-
thesis (Kremer and Means 2009; Kielak et al. 2011; Zobiole 
et al. 2012) chlorophyll biosynthesis (Reddy et al. 2004; 
Serra et al. 2013), photochemical reactions (Vivancos et al. 
2011), carbon metabolism (Mateos-Naranjo et al. 2009; 
Zobiole et al. 2011b; Ding et al. 2011), nitrogen metabo-
lism (Zobiole et al. 2010), plant mineral nutrition (Cakmak 

Fig. 3  Overview for the incorporation of the glyphosate-resistant gene (EPSPS) in plants via Ti plasmid

Fig. 4  Different aspects of the toxicity of glyphosate in plants
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et al. 2009; Senem et al. 2009; Zobiole et al. 2010, 2011b, 
2012), oxidative stress (Ahsan et al. 2008), disruption of 
lignin, phytohormones, etc. (Sergiev et al. 2006; Miteva 
et al. 2010). Glyphosate inhibits the synthesis of chlorophyll, 
fatty acids, amino acids (Gomes et al. 2017a), and secondary 
metabolites such as quinones (Dewick 1995) which forms 
an important component in the physiological processes of 
the plants (Mateos-Naranjo et al. 2009; Zobiole et al. 2012; 
Yanniccari et al. 2012). Glyphosate decreases the Mg con-
tent in leaves (Cakmak et al. 2009) which leads to reduced 
photosynthetic rate and chlorophyll content (Zobiole et al. 
2012). Glyphosate-based herbicides also cause change in 
the activity of ascorbate peroxidase (APX), catalase (CAT) 
and polyamine (PA) in L. minor tissues (Mkandawire et al. 
2014). It also prevents the biosynthesis of catalase, peroxi-
dase and δ-aminolevulinic acids which are the major com-
ponent of chlorophyll biosynthetic pathway by inducing Fe 
deficiency in plants (Marsh et al. 1963). However, it affects 
ALA production by competing with the major product of 
the ALA synthetase active site or leading to deprivation of 
glutamate content by competing with glycine in the pho-
torespiration process (Vivancos et al. 2011). Another study 
evaluated the foliar uptake, spray retention and translocation 
of glyphosate in Ambrosia artemisiifolia and found glypho-
sate to be translocated in developing apical tissues as well 
as roots within 3 h (Hussain et al. 2009). Glyphosate causes 
a reduction in the availability of amino acids and metal ions 
which are associated with PSI and PSII to transfer photon 
(light energy) into the electron transport chain system (Cak-
mak et al. 2009). Foliar spray of glyphosate and its metabo-
lites reduces the  CO2 assimilation capacity by decreasing 
the net carbon exchange and stomatal conductance in plants 
(Mateos-Naranjo et al. 2009; Zobiole et al. 2011a; Ding 
et al. 2011). Exposure of glyphosate also affects ribulose 
1,5-biphosphate carboxylase oxygenase (Rubisco) activity 
in plants by reducing the levels of ribulose-1,5-biphosphate 
(RuBP) and 3-phosphoglyceric acid (PGA) (Servaites et al. 
1987; Siehl 1997; De María et al. 2006).

Glyphosate affects the physiology of the host plant indi-
rectly by influencing the nitrogen metabolism or directly 
by effecting rhizobial symbionts (Zobiole et al. 2011a) thus 
leading to growth inhibition and finally death (De María 
et al. 2006). Glyphosate has also been reported to decrease 
nitrogen fixation activity and nodulation in plants (Zobiole 
et al. 2012). Some studies reveal that glyphosate induces 
nutritional disturbances by interfering with their location 
mechanism. Blockage of the shikimate pathway leads to 
the oxidative stress by inhibiting specific target sites of the 
plants was also reported in which changes were observed in 
oxidative stress markers (Ahsan et al. 2008). Glyphosate also 
reduces lignin content which is associated with functional 
and morphological quality of plants (Gaspar and Coumans 
1987). It reduces the synthesis of lignin by inhibiting the C

at
eg

or
y

G
ly

ph
os

at
e 

us
ed

Sc
ie

nt
ifi

c 
na

m
e

Eff
ec

ts
Re

sp
on

se
Re

fe
re

nc
es

Ro
un

du
p

C
ai

m
an

 la
tir

os
tr

is
Lo

w
 c

om
pl

em
en

t s
ys

te
m

 a
ct

iv
ity

Th
e 

de
cr

ea
se

 in
 W

B
C

s, 
a 

hi
gh

er
 

pe
rc

en
ta

ge
 o

f h
et

er
op

hi
ls

, a
 lo

w
 

pe
rc

en
ta

ge
 o

f F
2 

pr
ot

ei
n 

an
d 

ne
ga

tiv
e 

eff
ec

t o
n 

gr
ow

th

Si
ro

sk
i e

t a
l. 

(2
01

6)

Ro
un

du
p

Tr
ac

he
m

ys
 sc

ri
pt

a 
el

eg
an

s
Ex

po
se

d 
to

 tw
o 

di
ffe

re
nt

 c
on

ce
n-

tra
tio

ns
 (1

1 
or

 2
1 m

g/
L)

 re
su

lt-
in

g 
in

 a
lte

ra
tio

ns
 in

 th
e 

pl
as

m
a 

pr
ot

ei
ns

 g
ro

w
th

 o
f c

ai
m

an
s a

nd
 

se
le

ct
ed

 im
m

un
e 

pa
ra

m
et

er
s

H
ig

he
r p

er
ce

nt
ag

e 
of

 h
et

er
op

hi
ls

.
D

ec
re

as
e 

in
 W

B
C

 c
ou

nt
s.

H
ig

he
r T

PC
 (w

ith
 a

 lo
w

 p
er

ce
nt

-
ag

e 
of

 F
2 

pr
ot

ei
n 

fr
ac

tio
n)

.

La
to

rr
e 

et
 a

l. 
(2

01
3)

(1
)  G

ly
pr

o®

(2
) L

I7
00

O
lig

os
om

a 
po

ly
ch

ro
m

e
(1

) G
en

et
ic

 d
am

ag
e 

at
 c

on
ce

n-
tra

tio
ns

 ra
ng

in
g 

fro
m

 0
 to

 
11

,2
06

 p
pm

 o
f  G

ly
pr

o®
 a

nd
 0

 to
 

67
8 

pp
m

 o
f t

he
 su

rfa
ct

an
t

(2
) L

ow
 h

at
ch

in
g 

su
cc

es
s

Sh
ow

ed
 h

ea
t-s

ee
ki

ng
 b

eh
av

io
ur

 
co

ul
d 

be
 re

la
te

d 
as

 a
 fe

ve
r 

re
sp

on
se

 to
 in

cr
ea

se
 m

et
ab

ol
is

m
 

an
d 

th
er

eb
y 

co
un

te
ra

ct
in

g 
ph

ys
i-

ol
og

ic
al

 st
re

ss

Sp
ar

lin
g 

et
 a

l. 
(2

00
6)

Ta
bl

e 
2 

 (c
on

tin
ue

d)



Environmental Chemistry Letters 

1 3

EPSPS and by minimizing the supply of cinnamate pre-
cursors (Marchiosi et al. 2009). Glyphosate also induces a 
hormonal disturbance in soybean, which could affect devel-
opment and growth characteristics (Cakmak et al. 2009; 
Sugano et al. 2013). Glyphosate prevents the biosynthesis 
of auxin which is synthesized from the indolic tryptophan 
precursor by inhibition of the Shikimate pathway. Guo et al. 
(2015) also confirmed the negative aspects of glyphosate on 
algal species, as they measured environment concentrations 
(MEC) and the EC 50 value of glyphosate in Scenedesmus 
quadricauda to be 0.1 µg/L and 4.4 mg/L, respectively.

(b) Effect of glyphosate on plant growth-promoting rhizo-
bacterial (PGPR) microorganisms

Several workers have studied the adverse impacts of 
glyphosate on soil microorganisms. Residual glyphosate in 
soil and aquatic ecosystems is reported to adversely affect 
the population, community structure and activities of soil 
microorganisms (Newman et al. 2016). Most of the stud-
ies have found negligible impact of glyphosate on micro-
bial communities and their composition (Busse et al. 2001; 
Liphadzi et al. 2005; Ratcliff et al. 2006; Weaver et al. 
2007; Cherni et al. 2015). It exhibited adverse effects on 
the growth rate of beneficial microorganisms, resulting in 
decreased nitrogenase activity lower indole-3-acetic acid and 
gibberellin production and inferior phosphate and zinc solu-
bilizing activities (Madhaiyan et al. 2006). Glyphosate also 
hinders the growth of beneficial rhizospheric communities 
by reducing the profusion of indole acetic acid-producing 
rhizobacteria, Mn-reducing bacteria, indole acetic acid-pro-
ducing bacteria, etc. (Zobiole et al. 2011a). Glyphosate also 
reduces root mycorrhization in Trifolium repens L inoculated 
with arbuscular mycorrhizal fungi by reducing soil AMF 
spore biomass, propagules and vesicles formation (Zaller 
et al. 2014).

Negative effects of glyphosate on Mn-transforming bacte-
ria, indole acetic acid-synthesizing bacteria and fluorescent-
pseudomonads were also reported (Zobiole et al. 2011a). 
Glyphosate lowers the respiration and photosynthetic levels 
by 20% in Euglena species (Richardson et al. 1979). Glypho-
sate is also known to hinder the radial growth of hyphae in 
the endophytes by influencing their root colonization ability, 
propagule density and spore viability (Druille et al. 2013).

(c) Effect on invertebrates

Impact of glyphosate formulation (Roundup) was also 
considered in Lumbriculus variegates for four days at 
a concentration between 0.05 and 5 mg/L. Antioxidant 
enzyme superoxide dismutase and membrane-bound glu-
tathione S-transferase activity were found to be significantly 
increased (Contardo-Jara et al. 2009). Glyphosate toxicity 

also exerts negative effects on aquatic invertebrates like 
Daphnia magna. Reduction in size of juveniles significantly 
was observed even at the lowest dose of 0.05 mg active 
ingredient/L for both glyphosate and roundup. Growth, 
fecundity and abortion rate were found to be affected at 
0.45 mg active ingredient/L of the roundup. Hundred per-
centage abortion rate of eggs and the embryonic stage was 
observed at 1.35 mg active ingredient/L of roundup (Cuhra 
et al. 2013). The toxic effects of glyphosate on Lepthyphan-
tes tenuis (Araneae, Linyphiidae), a common spider was also 
studied in which mortality was found to be less than 10% in 
all treatments after 24 and 48 h and increased only margin-
ally (to 13%) after 72 h of spray application (Cuhra et al. 
2013). From the results, it could be inferred that glyphosate 
is harmless to non-target arthropods.

Feeding inhibition and stress-related response like 
increase in lipid peroxidation and antioxidant enzyme activi-
ties was observed in D. magna (Puértolas et al. 2010). The 
effect of glyphosate on Pseudosuccinea columella (inter-
mediate snail host of Fasciola hepatica) was also studied. 
Glyphosate was found to affect population dynamics of F. 
hepatica by affecting their reproduction and development. 
The resultant could be increased infections in animals 
including humans (Tate et al. 1997). In a comparative study, 
the order of toxicity was found to be chlorpyrifos formula-
tion > chlorpyrifos active ingredient > cypermethrin formu-
lation > cypermethrin active ingredient > glyphosate formu-
lation > glyphosate active ingredient in Daphnia Magna. 
This indicated the relatively less toxic nature of glyphosate 
(Demetrio et al. 2014). Comparison of toxicity of glyphosate 
with its formulation  Faena® was evaluated on cladoceran D. 
magna and rotifer Lecane quadridentata.  Faena® was found 
to be slightly more toxic to D. magna and around 11 fold 
more toxic to L. quadridentata than technical glyphosate 
(Domínguez-Cortinas et al. 2008).

Effect on vertebrates

Effect on amphibians and fishes

The toxicity of roundup (formulation of glyphosate) on 
neotropical fish Prochilodus lineatus was studied, and the 
 LC50 after 96 h was found to be 13.69 mg/L. An increase 
in plasma glucose in the exposure of 10 mg/L depicted the 
induction of stress. Activation of antioxidant defence was 
found to increase as the catalase liver activity showed an 
increase. Other biochemical, physiological and histological 
alterations were also found (Langiano and Martinez 2008). 
Another teleost fish, Leporinus obtusidens (Paiva), was 
exposed to various concentration of roundup (formulated 
glyphosate). Acetylcholinesterase (AChE) activity signifi-
cantly decreased in the brain of fish; significant reduction 
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in muscle glycogen and glucose was observed in glypho-
sate-exposed fish. Glyphosate concentration of 5 mg/L 
causes epithelial hyperplasia and subepithelial oedema. At 
10 mg/L, more pronounced changes including infiltration of 
leucocytes, chloride cells hypertrophy, rupture and lifting of 
respiratory epithelium on secondary lamellae were observed 
(Nešković et al. 1996). Oreochromis niloticus was exposed 
to roundup formulation at a concentration of 15 ppm for 
3 months. Cell proliferation in the gills, hyperplasia of the 
lamellar cell, lamellar fusion, lifting of epithelium and aneu-
rysm, vacuolation of the hepatocyte, kidney lesions and pyk-
nosis of nucleus cells were observed as histopathological 
alterations in Oreochromis niloticus after exposure of com-
mercial formulation roundup (Jiraungkoorskul et al. 2003). 
Three formulations of glyphosate (Roundup, Touchdown 
and Roundup Bioactive) were compared for toxicity on four 
species of southwestern Australian frogs (Crinia insignif-
era, Heleioporus eyrei, Limnodynastes dorsalis, and Lito-
ria moorei). Roundup was the most toxic of all the three 
thereafter touchdown and roundup active in order (Mann 
and Bidwell 1999). Roundup-ready, another formulation 
of glyphosate was used to evaluate the toxicity on Piarac-
tus mesopotamicus. The gill histopathology was unaltered, 
but the liver showed nuclear and cellular membrane altera-
tions, cytoplasmic vacuolization, glycogen depletion and 
lipid accumulation. This may hamper the detoxification and 
tissue repair process and may prove to be lethal (Shiogiri 
et al. 2012). An elevated level of GST and LPO in the liver, 
DNA damage and erythrocyte nuclear abnormalities were 
observed due to glyphosate in Prochilodus lineatus. The tox-
icity of glyphosate on Nile tilapias (Oreochromis niloticus) 
was evaluated. Significant changes in liver, kidney, gills and 
brain were observed. Epithelial lifting, lamellar fusion and 
hyperplasia were noticed in gills. Vacuolation of hepatocytes 
and necrosis was observed in liver. The kidney was charac-
terized by hyaline droplets in the tubular epithelial cells and 
pyknosis. Erratic swimming, respiratory stress and instant 
death of fish were also reported. The mortality was directly 
correlated with the dosage of pesticide (Ayoola 2008a). 
Significant increases in glutathione peroxidase and catalase 
enzymes were observed in rainbow trout when exposed to 
glyphosate concentration 2.5, 5 and 10 mg/L (Topal et al. 
2015). In another study, African catfish C. gariepinus was 
exposed to acute concentrations of glyphosate. Cellular 
infiltration was observed in the gills. Liver showed fatty 
acid degeneration, severe fat vacuolation, necrosis. Kidney 
showed haemopoietic necrosis and severe pyknotic nuclei. In 
the brain, neuronal degeneration, spongiosis, mononuclear 
infiltration was observed. The juvenile was found to be more 
affected than adults (Ayoola 2008b). It is very interesting 
to note that fish have evolved to alleviate the reactive oxy-
gen species in their system by converting superoxide anions 
with the help of antioxidant enzymes to hydrogen peroxide 

and further to  H2O and  O2 (Xing et al. 2012). Toxicity of 
glyphosate and its formulation, the roundup was compared 
for four amphibian species (Rana clamitans, R. pipiens, R. 
sylvatica, and Bufo americanus). The formulation was found 
to be toxic than glyphosate (Howe et al. 2004). Prochilo-
dus lineatus was also studied for roundup toxicity. Increase 
in glutathione peroxidase (GPx) and reduction of superox-
ide dismutase (SOD) was observed. Inhibition of AChE 
in the brain and muscles after 96 h and 24 h of exposure 
was observed (Modesto and Martinez 2010). Roundup is 
genotoxic to erythrocytes and gill cells of P. Lineatus (Cav-
alcante et al. 2008). Formulation of glyphosate affects the 
growth, acetylcholinesterase activity, metabolic and haema-
tological parameters in Paiva (Leporinus obtusidens). An 
elevated level of plasma alanine aminotransferase (ALT) 
was observed in hybrid fish, in Surubim, after glyphosate 
action. Increase in ventilator frequency level was observed 
for the initial 5 min, and declined level was observed on 
the exposure of 96 h (Glusczak et al. 2006). Hepatocytes 
of carp (Cyprinus carpio) were also found to be affected by 
roundup. Observations include swelling of mitochondria, 
myelin-like structures in carp hepatocytes and disappear-
ance of the internal membrane of mitochondria and other 
ultrastructural alterations (Szarek et al. 2000). Sobjak et al. 
(2017) studied the toxicity of glyphosate in larvae of Rham-
dia quelen at 6.5 mg/L of glyphosate concentration. Neuro-
toxicity and antioxidant system using catalase, glutathione 
transferase, glutathione reductase, cholinesterases and lipop-
eroxidation were found to be affected. Lactate levels in liver 
and white muscles were found to be increased after exposure 
to glyphosate. Ammonia was found to increase in both tissue 
types while protein level increased in liver and decreased in 
white muscle in silver catfish (Rhamdia quelen). Roundup 
is also reported to kill 96–100% of larval amphibians after 
three weeks of exposure (Relyea 2005).

Effect on higher vertebrates

The genotoxic potential of roundup was evaluated in Cai-
man latirostris. The comet assay and micronucleus assay 
were performed on the erythrocytes to evaluate genotoxicity. 
Treated groups were characterized by significant elevation 
in DNA damage when compared to control (Poletta et al. 
2009). Roundup is also reported to cause an increase in DNA 
damage as observed via comet assay tegu lizard (Salvator 
merianae) embryos (Schaumburg et al. 2016). Commercial 
glyphosate, the roundup was found to decrease complement 
system activity and suppress the immune system leading to 
increased risk of diseases in broad-snouted caiman (Cai-
man latirostris) (Siroski et al. 2016). The decrease in WBCs, 
a higher percentage of heterophils, adverse growth effects 
in juveniles and a low percentage of F2 protein exposed 
to roundup were also reported (Latorre et al. 2013). An 



Environmental Chemistry Letters 

1 3

increase in the levels of ALT (alanine aminotransferase), 
AST (aspartate aminotransferase), γ-GT (gamma-glutamyl 
transpeptidase), MCV (mean corpuscular volume), lipid 
peroxidation, whereas declination in erythrocytes, haema-
tocrit and haemoglobin were observed in Swiss albino mice 
after glyphosate evaluation after 15 days (Jasper et al. 2012). 
Eggs of red-eared sliders (Trachemys scripta elegans) were 
exposed to the single application of commercial glyphosate, 
Glypro, in the concentration of 0 to 11206 ppm wet weight 
of glyphosate along with 0 to 678 ppm of surfactant, LI700. 
The hatching success was significantly reduced in the high-
est concentration of herbicide in comparison to other treat-
ments. Glyphosate in addition to LI700 poses a low-level 
risk to embryos in comparison to glyphosate alone (Sparling 
et al. 2006). Dermal exposure of two different formulations 
of glyphosate (144 mg/L) was introduced on New Zealand 
common skink (Oligosoma polychrome).

Agpro glyphosate 360 did not have any significant impact 
while skinks in Yates roundup showed heat-seeking behav-
iour which could be related as a fever response to increase 
metabolism and thereby counteract physiological stress (Car-
penter et al. 2016). Haematological parameters like aspartate 
aminotransferase (AST), serum alanine aminotransferase 
(ALT), lactate dehydrogenase (LDH), amount of serum lipo-
protein (LDL, HDL), total cholesterol and creatinine were 
also found to be altered in rat after the exposure of glypho-
sate formulation, roundup at 56 mg/Kg and 560 mg/kg each 
day for 13 weeks (Çaǧlar and Kolankaya 2008). The toxicity 
of glyphosate was also studied on the rat for its effect on 
the spontaneous motoric activity of the intestine. Biphasic 
response (miorelaxation accompanied by contraction) was 
observed in muscles. Overall, glyphosate was detected to 
impair the motility of gastrointestinal muscles (Chłopecka 
et al. 2014). Glyphosate toxicity in rats causes leakage of 
ALT, AST and ALP which depicted damage in the hepato-
cytes. Increase in creatinine and urea level also depicted 
kidney damage (El-Shenawy 2009). Female Wistar rats were 
treated with 500, 750, 1000 mg/Kg of roundup formulation 
of glyphosate from 6 to 15 days of pregnancy. Fifty percent-
age mortality in female rats was observed at 1000 mg/Kg. 
Skeletal alterations up to 57% in foetuses were recorded, and 
it was concluded that roundup formulation is teratogenic 
and induced developmental retardation in the foetal skel-
eton (Dallegrave et al. 2003). Exposure of sub-lethal con-
centrations of glyphosate to rats also increases glutathione 
transferase enzyme and reduction in glutathione and lipid 
peroxidation in liver, small intestine and kidneys (Larsen 
et al. 2012). Glyphosate toxicity is also related to the uncou-
pling of oxidative phosphorylation in mitochondria (Peixoto 
2005). Excessive lipid peroxidation as a result of glyphosate 
also leads to an overload on maternal and foetal antioxidant 
defence system in rats (Beuret et al. 2005). Glyphosate-bio-
carb, a formulation of glyphosate, also leads to irreversible 

damage in hepatocytes, increase in the number of Kupffer 
cells, large deposition of reticulin fibres, leakage of hepatic 
intracellular enzymes, aspartate aminotransferase (AST) and 
alanine aminotransferase (ALT) (Benedetti et al. 2004). The 
application of glyphosate is also reported to modify the den-
sity and habitat use of birds (Morrison and Meslow 1984). 
Zebra finches (Poephila guttata) died after ingestion of seeds 
containing glyphosate (5000 µg/g) (Evans and Batty 1986). 
The World Health Organisation (WHO) and the Food and 
Agriculture Organisation (FAO) in its latest report (2016) 
provide positive evidence for non-Hodgkin’s lymphoma in 
some case–control studies. But, large sample size studies 
depict no correlation between glyphosate and cancer at any 
exposure level (Gill et al. 2017).

Effect on humans

Glyphosate has no threat to a human life. Several regulatory 
agencies concluded that generally there are fewer glypho-
sate exposures than the reference dose and the acceptable 
daily intakes, thus supporting a conclusion that even for 
these highly exposed populations the exposures were within 
regulatory limits (Solomon 2016). Initial reports of Roundup 
Ultra 360 SL along with glyphosate on the human erythro-
cytes were found to be less harmful as it showed the eleva-
tion in the level of methaemoglobin and haemolysis, but 
no significant change in GSH (glutathione) level (Pieni̧zek 
et al. 2004). Its formulation (Roundup)-induced problems 
during pregnancy affirmed by exposing the JEG3 (human 
placental cell line) to low concentration for 18 h displayed 
its role in hindering the functionality of aromatase enzyme 
as well as fluctuated the mRNA level by amending the active 
site (Richard et al. 2005). Microarray analysis on mamma-
lian cell line, MCF-17 showed its competence to amend the 
gene expression of the dysregulated CXCL12, EGR1 (early-
growth response 1) and HIF1 (hypoxia-inducible factor 1) 
gene. Glyphosate is also reported for its severe consequences 
on the adult as well as foetal cells. In vivo xenobiotic toxicity 
assessment of its four formulations over HepG2 (hepatic cell 
line) revealed the disruption of MDA-MB453-kb2 (androgen 
receptor) at 0.5 ppm concentration, whereas the formula-
tion R400 terminated the transcription cycle of oestrogen 
receptor of HepG2. The 10 ppm concentration exhibited a 
cytotoxic effect, whereas 5 ppm lead to the DNA damage 
(Gasnier et al. 2009). Glyphosate intoxication leads to the 
complications like arrhythmia, hypotension, mental relapse, 
renal and respiratory failure, where surfactant volume is 
claimed to be a critical element for inducing toxicity among 
the humans (Seok et al. 2011). Buccal epithelial cell line 
TR146 exposed to glyphosate and roundup developed cancer 
to the dosage of less than 40 mg/L testified by the cytotoxic 
effect like membrane damage as well as impaired mito-
chondrial function. The dosage of > 80 mg/L elevated LDH 
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(lactate dehydrogenase) leads to membrane and DNA dam-
age to the epithelial cells (Koller et al. 2012). Intoxication by 
glyphosate is assessed by various assays like Alamar Blue, 
MTT, ToxiLight and comet and techniques like HPLC–MS, 
mass Spectrometry. The common intoxication symptom 
comprises cardiovascular shock, haemodynamic hinder-
ance, intravascular coagulation, myocardial infarction and 
failure of multiple organs (Zouaoui et al. 2013). A different 
formulation of glyphosate was exposed to HEK293 (Embry-
onic), HepG2 (Hepatic) and JEG3 (Placental) cell lines for 
24 h showed the alteration on the caspase 3/7 enzyme, mem-
brane degradation and mitochondrial functionality. POE-15 
(polyethoxylated tallow amine) formulation of glyphosate 
was tested on hepatic (HepG2), embryonic (HEK293) and 
placental (JEG3) cell lines. It was found that the formulation 
was highly toxic even at 1–3 ppm concentration and intruded 
the cell integrity, necrosis during micellization, stimulated 
the disruption of the endocrine system and respiratory sys-
tem. JEG3 was found to be 2 times more sensitive to treat-
ment than HEK293 and HepG2 (Mesnage et al. 2013). Simi-
lar results were seen on T47D cell line as the amendment in 
oestrogen response element activity resulted via antagonistic 
oestrogen which alters the ERα and ERβ expression up to 
5-13 fold (Thongprakaisang et al. 2013). GlyBH (glypho-
sate-based herbicides) have been reviewed and realized to 
have an enduring chronic effect such as hepatorenal, terato-
genic and tumourigenic, which can be corroborated via oxi-
dative stress as well as disruption of endocrine functionality. 
Its role in trans-generational, reproductive and neurological 
disorder is under investigation (Mesnage et al. 2015)

Analytical detection and quantification 
of glyphosate

Detection of glyphosate has always been an issue of major 
concern, subjected to its poor solubility, high polarity and 
evaporation issues (Gomes et al. 2017b). Several authors 
have reported difficulties in detection and estimation of 
glyphosate due to non-availability of fluorophores and 
chromophores groups in its molecular structure (Gill et al. 
2018). Due to good efficiency, multiple uses, high toxic-
ity, long lifetime and high stability, researchers have made 
efforts towards its derivatization. Different methods have 
been reported till date for the quantification and detection 
of glyphosate and its metabolites in diverse environmen-
tal matrixes (soils, sludges, sediments, juices, plant mate-
rial, groundwater, surface water and biological fluids, etc. 
(Balderacchi et al. 2013; Koskinen et al. 2016). Different 
techniques such as ultraviolet (UV) (Lee et al. 2010), elec-
trochemical detection (ECD) (Songa et al. 2009), HPLC 
coupled to mass spectrometry (MS) (Guo et al. 2005), high-
performance liquid chromatography (HPLC) coupled with 
tandem MS (MS/MS) (Sanchís et al. 2012), fluorescence 

(FLD), inductively coupled plasma MS (ICP-MS) (Chen 
et al. 2009), time-of-flight MS (TOF–MS) (Koskinen et al. 
2016), ion chromatography (IC) coupled to conductivity 
detection (CD) (Guo et al. 2007), condensation nucleation 
light scattering detection (CNLSD) (You et al. 2003), ICP-
MS capillary electrophoresis (CE) with capacity couple 
contactless conductivity detection (C4D) (Guo et al. 2007), 
UV capillary zone electrophoresis (CZE) with CD and 
UV detection (Goodwin et al. 2002), gas chromatography 
(GC) coupled to MS (Krüger et al. 2014), a flow injection 
(FI) system with electrochemiluminescence (ECL) detec-
tion (Chuang et al. 2013), enzyme-linked immunosorbent 
assay (ELISA) (Mörtl et al. 2013; Krüger et al. 2014; Chang 
et al. 2016; Wang et al. 2016) solution spectrophotometry 
and solution electrochemical detection (ECD) are employed 
for the quantification of glyphosate and its major metabo-
lite AMPA in environmental samples. Derivatization (using 
various derivatizing agents) is an additional preparatory step 
often required in glyphosate and AMPA analysis. Methods 
for extraction, derivatization, pre-concentration and different 
detection methods with their methods are gas chromatog-
raphy (GC), gas chromatography-mass spectrometry (GC/
MS), ion chromatography (IC), high-performance liquid 
chromatography (HPLC), liquid chromatography-mass spec-
trometry (LC/MS), capillary electrophoresis (CE), enzyme-
linked immunosorbent assay (ELISA) and spectrophotomet-
ric techniques and use of nanosensors.

The detection and estimation of glyphosate in water has 
been reported in (Börjesson and Torstensson 2000) guava 
fruit extract, soil (Peruzzo et al. 2008), sediments (Aparicio 
et al. 2013), animal and human tissues (Krüger et al. 2014), 
plants tissues (Nedelkoska and Low 2004), wheat grains (Jan 
et al. 2009), urine samples, organs of dairy cow (Krüger 
et al. 2014), soybean extracts (Arregui et al. 2004), in carrots 
(Kataoka et al. 1996), etc.

The detection of glyphosate in different matrices is quan-
tified using GC coupled with mass spectroscopy (Krüger 
et al. 2014), including different detectors like electron cap-
ture detector. The estimation of glyphosate and its residues 
in river soil, water and carrot samples were quantified by 
using gas chromatography coupled with flame photometric 
detection using a DB-1701 capillary column (Kataoka et al. 
1996). The range of percentage recovery varied from 91 to 
106%. The detection limit was 8 picogram. The determina-
tion of glyphosate in water and soil samples is performed 
by GC–MS method. This method involves ligand exchange, 
anion exchange and derivatization and final identification 
and quantification by GC–MS and exhibit limit of detection 
was 0.1 µgL−1, 0.006 µg/g in water and soil samples (Börjes-
son and Torstensson 2000). The complicated procedures 
involved in the derivation of glyphosate before analysis 
reduce its applicability and practical aspects such as ECD, 
nitrogen phosphorous detector (NPD) (Hu et al. 2011), flame 
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photometric detector (FPD) (Kataoka et al. 1996) and flame 
ionization detector (FID) (Kudzin et al. 2002). The pres-
ence of hydrogen bonding between hydrogen atoms and an 
amino group in glyphosate attributes to high boiling point 
and high polarity of the molecule (Kumar et al. 2017). Such 
physicochemical properties of glyphosate make its detection 
difficult through GC. To solve this problem, the polar groups 
are deactivated by carrying out derivatization of glyphosate 
and its residues. Table 3 shows different reports on the detec-
tion and estimation of glyphosate. A recovery of glyphosate 
from water and soil samples up to 90% has been reported 
by many authors.

High‑performance liquid chromatography

HPLC is also a rapid analytical technique with high precision 
and high reproducibility for the quantification of glyphosate. 
But the complexity in the derivatization procedures limits 
its practical applications. The absence of chromophores and 
fluorophores make derivatization an indispensable step dur-
ing the analysis (Wang et al. 2016). The derivatization pro-
cedures may include pre-column or post-column derivatiza-
tion step. Different pre-derivatizing reagent commonly used 
for HPLC analysis are 2,5- dimethyl benzene sulfonyl chlo-
ride, p-toluenesulphonyl chloride, o-nitrobenzenesulfonyl 
chloride, ophthalaldehyde, 9-fluorenylmethylchoroformate 
(FMOC) (Kawai et al. 1991; Sancho et al. 1996b; Nedelko-
ska and Low 2004; Fang et al. 2014). Detectors used in the 
HPLC detection of glyphosate are UV detector and fluo-
rescence detector (FLD). Post-column derivatization pro-
cedures involve the use of fluorescence detector (FLD) and 
sodium hypochlorite and a mixture of o-phthalaldehyde and 
mercaptoethanol as derivatizing agent (Ding et al. 2015). 
According to reports procedures involving post-column deri-
vatization lead to more precision compared to pre-column 
derivatization. Determination of glyphosate in water and 
plants by HPLC method after pre-column derivatization with 
9-fluorenylmethyl chloroformate (FMOC-Cl) using single 
and coupled polymeric amino columns was also studied. 
This approach exhibits a detection limit of 0.16 g/L in rain-
water samples and 0.3 mg/Kg in plant tissues, with recov-
ery values of 94% and 82.4%, respectively. The HPLC–UV 
detection of glyphosate in water, soil and sediments from 
soybean cultivation area was studied which involves the 
derivatization by 9-fluorenylmethylchloroformate (FMOC-
Cl), and the methods have detection limits of 0.04 mg/L for 
water samples and 0.10 mg/Kg for soil samples. Glypho-
sate residues in transgenic glyphosate-resistant soybean with 
the help of HPLC–UV detection, with recovery values of 
83–113% and the detection limit of 0.02 mg  Kg−1, were also 
studied (Arregui et al. 2004).

Ion chromatography

Ion chromatography is another analytical technique based on 
the ion-exchange. IC-ICP is an element-specific and highly 
sensitive detection technique. The detection of glyphosate 
molecule by IC involves the use of anion exchange column 
and alkaline buffer as an eluent due to the ionic nature of 
glyphosate. The detection of glyphosate in water samples has 
been reported using self-fabricated IC-ICP IC-CNLSD (You 
et al. 2003) and IC-CNLSD178 IC-ICP (Guo et al. 2007) 
detectors. Quantitative determination of trace glyphosate 
and its residue water samples have been reported by Guo 
et al. (2005) by IC-ICP/MS using polymer anion exchange 
column (Dionex IonPac AS16, 4.0 mm × 250 mm) and cit-
ric acid as eluent. This method has high recovery values of 
97.1–107.0%. The detection of glyphosate residues by sup-
pressed conductivity detection (DX-100) and  Na2CO3 and 
NaOH as eluent (LOD ~ 0.042 µg/mL) was also reported 
(Zhu et al. 1999). Detection of glyphosate in analysed sur-
face, well, potable and ultrapure water samples for glypho-
sate residues was studied and the analysis was carried by 
Dionex Model ICS-3000 ion chromatograph fitted with a 
25-µL loop, IonPac AG19 guard and AS19 analytical col-
umns, ASRS-300 (2 mm) suppressor, and conductivity 
detector, and detection limit of 0.05 mg/L and recovery in 
the range of 90–105% have been achieved (Marques et al. 
2009).

The technique is advantageous over the other chroma-
tographic analytical techniques due to simple procedures 
involved. IC procedure does not involve pre-concentration, 
derivatization, and mobile phase conductivity inhibition 
(Guo et al. 2005; Ding and Yang 2013). It is simple, rapid, 
reliable and inexpensive technique. But suffers from low 
sensitivity and high detection limits hence has limited prac-
tical applications compared to other chromatographic tech-
niques. Its applicability only to water and soil samples is 
another limitation to this approach.

Chromatographic techniques coupled with mass 
spectrometry

The conventional chromatographic techniques suffer from 
certain limitations for the detection of analysis of glypho-
sate. Coupling the existing chromatographic technique to 
mass spectrometry not only eliminates the most indispensa-
ble step of derivatization but also improves the sensitivity 
of glyphosate detection. The common modes used in mass 
spectrometry are multiple reaction monitoring (MRM) 
and selection reaction monitoring (SRM) which analysed 
glyphosate residues in surface water, particulate matter, sedi-
ment and soil samples from sixteen agricultural sites and 
forty-four streams in the agricultural basin by UPLC-MS/
MS ESI(±). The process involved extraction by potassium 



 Environmental Chemistry Letters

1 3

Ta
bl

e 
3 

 A
na

ly
tic

al
 te

ch
ni

qu
es

 u
se

d 
in

 th
e 

qu
al

ita
tiv

e 
an

d 
qu

an
tit

at
iv

e 
an

al
ys

es
 o

f g
ly

ph
os

at
e 

an
d 

its
 d

er
iv

at
iv

es
 u

nd
er

 d
iff

er
en

t g
eo

-c
lim

at
ic

 a
nd

 e
xp

er
im

en
ta

l c
on

di
tio

ns

A
na

ly
tic

al
 te

ch
ni

qu
e

D
et

ec
to

r
M

et
ho

d
So

ur
ce

Sa
m

pl
e 

de
te

ct
io

n
Pe

rc
en

ta
ge

 R
ec

ov
er

y
Re

fe
re

nc
es

G
as

 c
hr

om
at

og
ra

ph
y 

(G
C

/G
C

–M
S)

G
C

–M
S

G
C

–M
S 

sy
ste

m
, w

ith
 

ov
en

 te
m

pe
ra

tu
re

 
st

ar
tin

g 
at

 8
0˚

C
 a

nd
 

af
te

r 2
 m

in
, a

t a
 ra

te
 o

f 
28

.8
°C

  m
in

−
1

W
at

er
Fo

r G
P 

=
 0.

67
 (L

O
D

) a
nd

 
2.

02
 µ

g 
L−

1  (L
O

Q
)

Fo
r A

M
PA

 =
 0.

15
 (L

O
D

) 
an

d 
0.

45
 µ

g 
L−

1  (L
O

Q
)

70
–1

20
%

Si
lv

a 
et

 a
l. 

(2
01

5)

So
il

Fo
r G

P 
=

 0.
00

27
 a

nd
 

A
M

PA
 0

.0
06

 m
g/

kg
Se

di
m

en
t

Fo
r G

P 
=

 0.
00

81
 a

nd
 

A
M

PA
 0

.0
01

8 
m

g/
kg

FI
D

N
-m

et
hy

l-N
-te

rt.
-b

ut
yl

-
di

m
et

hy
ls

ili
co

nt
rifl

uo
ro

 
ac

et
am

id
e 

an
d 

di
m

et
h-

yl
fo

rm
at

e

W
at

er
–

>
 90

%
Ts

un
od

a 
(1

99
3)

FI
D

tri
flu

or
oa

ce
tic

 a
ci

d-
tri

f-
lu

or
oa

ce
tic

 a
nh

yd
rid

e 
an

d 
tri

m
et

hy
l o

rth
of

or
-

m
at

e

W
at

er
–

>
 95

%
K

ud
zi

n 
et

 a
l. 

(2
00

2)

G
C

–M
S 

(E
I m

od
e)

O
ve

n 
te

m
pe

ra
tu

re
 7

0 
°C

.
H

el
iu

m
 w

as
 u

se
d 

as
 

th
e 

ca
rr

ie
r g

as
 fl

ow
 

ra
te

—
0.

7 
m

L 
m

in

W
at

er
 a

nd
 so

il
0.

1(
w

at
er

) a
nd

 0
.0

06
 

(s
oi

l) 
µg

L−
1

–
B

ör
je

ss
on

 a
nd

 T
or

ste
ns

so
n 

(2
00

0)

FP
D

Is
op

ro
py

l c
hl

or
of

or
m

at
e 

an
d 

di
az

om
et

ha
ne

So
il

–
>

 91
%

(K
at

ao
ka

 e
t a

l. 
19

96
)

N
PD

Tr
ifl

uo
ro

ac
et

ic
 a

nh
yd

rid
e 

an
d 

4,
4,

4-
tri

flu
or

o-
1 

-b
ut

an
ol

So
il

0.
02

 m
g/

kg
>

 84
%

(H
u 

et
 a

l. 
20

11
)

FP
D

So
lid

–l
iq

ui
d 

ex
tra

ct
io

n
R

iv
er

 w
at

er
, s

oi
l a

nd
 c

ar
-

ro
t s

am
pl

es
12

 p
g

91
–1

60
%

(K
at

ao
ka

 e
t a

l. 
19

96
)

M
S

D
ilu

tio
n 

fo
r u

rin
e 

sa
m

-
pl

es
Ti

ss
ue

 sa
m

pl
es

 w
er

e 
m

in
ce

d 
ho

m
og

en
iz

ed
, 

fr
ee

ze
d 

an
d 

th
aw

ed

Re
si

du
es

 in
 a

ni
m

al
s a

nd
 

hu
m

an
s (

ur
in

e 
an

d 
tis

su
es

)

1 
µg

/m
L 

(h
um

an
 u

rin
e)

3.
17

 µ
g/

m
L 

ra
bb

it 
ur

in
e

4.
7 

µg
/m

L 
(o

rg
an

s)

91
%

(K
rü

ge
r e

t a
l. 

20
14

)

C
ap

ill
ar

y 
el

ec
tro

ph
or

es
is

EC
L 

de
te

ct
or

In
di

re
ct

 d
et

ec
tio

n
W

he
at

 sa
m

pl
e

0.
8/

µg
m

L-
~

–
(C

ik
al

o 
et

 a
l. 

19
96

)

El
ec

tro
ch

em
ilu

m
in

es
-

ce
nc

e 
de

te
ct

io
n

So
yb

ea
ns

0.
6 

μg
/L

 (w
at

er
) g

ly
ph

o-
sa

te
4.

04
 μ

g/
L 

(w
at

er
) A

M
PA

0.
6 

μg
/L

 (S
oy

a)
 g

ly
ph

o-
sa

te

(C
hi

u 
et

 a
l. 

20
08

)

In
di

re
ct

 d
et

ec
tio

n
W

at
er

5 
μM

–
(C

ik
al

o 
et

 a
l. 

19
96

)



Environmental Chemistry Letters 

1 3

A
na

ly
tic

al
 te

ch
ni

qu
e

D
et

ec
to

r
M

et
ho

d
So

ur
ce

Sa
m

pl
e 

de
te

ct
io

n
Pe

rc
en

ta
ge

 R
ec

ov
er

y
Re

fe
re

nc
es

Pr
e-

co
nc

en
tra

te
 b

y 
us

in
g 

an
io

n 
ex

ch
an

ge
 re

si
n.

W
at

er
5 

g 
m

L−
1  fo

r g
ly

ph
o-

sa
te

 a
nd

 4
 g

 m
L−

1  fo
r 

A
M

PA

84
 to

 8
7%

 fo
r g

ly
ph

os
at

e 
(R

.S
.D

. <
 6%

) a
nd

 fr
om

 
85

 to
 9

8%
 fo

r A
M

PA

(K
hr

ol
en

ko
 e

t a
l. 

20
03

)

El
ec

tro
sp

ra
y 

co
nd

en
sa

-
tio

n 
nu

cl
ea

tio
n 

lig
ht

 
sc

at
te

rin
g 

de
te

ct
io

n 
(E

SI
-C

N
LS

D
)

0.
2 

m
g/

m
L

–
(Y

ou
 e

t a
l. 

20
03

)

M
R

M
A

cc
la

im
®

 M
ix

-m
od

e 
W

A
X

-1
 c

ol
um

n 
(R

P 
an

d 
w

ea
k 

an
io

n)
 A

 
m

et
ha

no
l/w

at
er

 =
 50

:5
0 

(v
/v

), 
B

 3
00

 m
M

 
am

m
on

iu
m

 a
ce

ta
te

 in
 

A
 p

ha
se

(g
ra

di
en

t e
lu

tio
n)

G
ro

un
dw

at
er

1 
μg

/L
–

(H
ao

 e
t a

l. 
20

11
)

M
R

M
CA

PC
EL

L 
PA

K
 

ST
 c

ol
um

n 
(1

 
50

 m
m

 ×
 2.

1 
m

m
) 

10
 m

M
 a

m
m

on
iu

m
 

ac
et

at
e 

aq
ue

ou
s s

ol
u-

tio
n 

(P
H

10
.1

): 
ac

et
on

i-
tri

le
 =

 72
:2

8 
(v

/v
)

D
rin

ki
ng

 w
at

er
4 

μg
/L

–
(Z

he
ng

 e
t a

l. 
20

13
)

M
R

M
H

yp
er

si
l g

ol
d 

aQ
 c

ol
um

n 
(1

00
 m

m
 ×

 2.
1 

m
m

, 
3 

μm
) A

 a
m

m
on

iu
m

 
ac

et
at

e 
aq

ue
ou

s s
ol

u-
tio

n 
(c

on
ta

in
in

g 
0.

4%
 

fo
rm

ic
 a

ci
d)

, B
ac

et
on

itr
ile

 (g
ra

di
en

t 
el

ut
io

n)

D
rin

ki
ng

 w
at

er
2 

μg
/L

–
(G

uo
 e

t a
l. 

20
05

)

El
ec

tro
sp

ra
y 

ta
nd

em
 

m
as

s s
pe

ct
ro

m
et

ry
 

(L
C

–E
SI

–M
S/

M
S)

So
lid

-p
ha

se
 e

xt
ra

ct
io

n 
us

in
g 

flu
or

en
yl

m
et

hy
l-

ch
lo

ro
fo

rm
at

e 
(F

M
O

C
-

C
l)

0.
2 

ng
/L

 (g
ly

ph
os

at
e)

0.
2 

ng
/L

 (A
M

PA
)

0.
6 

ng
/L

 (g
lu

fo
si

na
te

)

91
–1

07
%

(H
an

ke
 e

t a
l. 

20
08

)

Fl
uo

re
sc

en
ce

 d
et

ec
tio

n
Pr

e-
co

lu
m

n 
de

riv
at

iz
at

io
n 

w
ith

 9
-fl

uo
re

ny
lm

et
hy

l 
ch

lo
ro

fo
rm

at
e

0.
5 

m
g/

kg
80

–9
9%

(H
og

en
do

or
n 

et
 a

l. 
19

99
)

Pr
e-

co
lu

m
n 

flu
or

og
en

ic
 

la
be

lli
ng

 (fl
uo

re
sc

en
ce

 
de

te
ct

io
n)

C
ou

pl
ed

-c
ol

um
n 

liq
ui

d 
ch

ro
m

at
og

ra
ph

y 
(F

M
O

C
)

0.
2/

µL
/1

48
–5

4%
(S

an
ch

o 
et

 a
l. 

19
96

a)

Ta
bl

e 
3 

 (c
on

tin
ue

d)



 Environmental Chemistry Letters

1 3

A
na

ly
tic

al
 te

ch
ni

qu
e

D
et

ec
to

r
M

et
ho

d
So

ur
ce

Sa
m

pl
e 

de
te

ct
io

n
Pe

rc
en

ta
ge

 R
ec

ov
er

y
Re

fe
re

nc
es

H
ig

h-
pe

rfo
rm

an
ce

 
liq

ui
d 

ch
ro

m
at

og
ra

ph
y 

(H
PL

C
/H

PL
C

-M
S/

U
PL

C
-M

S)

H
PL

C
–U

V
–

LO
D

 9
.9

3 
an

d 
LO

Q
 

30
.1

 µ
g 

L−
1  (w

at
er

)
0.

04
 m

g/
kg

 (s
oi

l) 
an

d 
0.

12
0 

m
g/

kg
 (s

ed
i-

m
en

ts
)

70
%

 to
 1

20
%

Si
lv

a 
et

 a
l. 

(2
01

5)

2,
5-

D
im

et
hy

lb
en

ze
ne

su
l-

fo
ny

lc
hl

or
id

e
67

 μ
g/

L
(F

an
g 

et
 a

l. 
20

14
)

p-
To

lu
en

es
ul

ph
on

yl
 

ch
lo

rid
e

W
at

er
10

 μ
g/

L
10

(K
aw

ai
 e

t a
l. 

19
91

)

FM
O

C
W

at
er

0.
02

 μ
g/

L
(H

id
al

go
 e

t a
l. 

20
04

)
FM

O
C

W
at

er
0.

1 
μg

/L
(S

an
ch

o 
et

 a
l. 

19
96

a)
Po

ly
m

er
ic

 a
m

in
o 

co
lu

m
n

FM
O

C
W

at
er

0.
16

 μ
g/

L 
(w

at
er

)
0.

3 
m

g/
kg

 (G
ra

ss
)

(N
ed

el
ko

sk
a 

an
d 

Lo
w

 
20

04
)

U
V

 d
et

ec
to

r
So

il 
w

at
er

, s
tre

am
 w

at
er

35
–1

50
2 

μg
/k

g 
(s

oi
l) 

gl
yp

ho
sa

te
29

9–
22

56
 μ

g/
kg

 (S
oi

l) 
A

M
PA

15
%

 (w
at

er
) g

ly
ph

os
at

e
12

%
 (w

at
er

) A
M

PA
66

%
 (s

tre
am

) g
ly

ph
os

at
e

88
.5

%
 (s

tre
am

) A
M

PA

(A
pa

ric
io

 e
t a

l. 
20

13
)

SH
 +

 P
M

W
at

er
 S

A
X

 a
ni

on
 

ex
ch

an
ge

 c
ol

um
n

M
ob

ile
 p

ha
se

: C
itr

at
e 

bu
ffe

r

W
at

er
2 

μg
/L

A
bd

ul
la

h 
et

 a
l. 

(1
99

5)

H
PL

C
/U

V
Li

qu
id

–l
iq

ui
d 

ex
tra

ct
io

n 
w

ith
 4

-c
hl

or
o-

3,
5-

di
ni

-
tro

be
nz

ot
rifl

uo
rid

e

En
vi

ro
nm

en
ta

l w
at

er
 

sa
m

pl
es

0.
00

9 
m

g 
 L−

1
91

.8
0–

10
0.

20
%

Q
ia

n 
et

 a
l. 

(2
00

9)

H
PL

C
 w

ith
 U

V
 d

et
ec

tio
n 

(fl
uo

re
sc

en
ce

 d
et

ec
to

r)
C

al
ci

um
 h

yp
oc

hl
or

ite
 

an
d 

th
en

 c
ou

pl
ed

 w
ith

 
th

e 
o-

ph
th

al
al

de
hy

de
-

2-
m

er
ca

pt
oe

th
an

ol
 

co
m

pl
ex

So
ya

be
an

1.
9–

4.
4 

m
g/

kg
 L

ea
ve

s
0.

1–
1.

8 
m

g/
kg

 S
ee

ds
87

–1
13

%
A

rr
eg

ui
 e

t a
l. 

(2
00

4)

LI
G

A
N

D
-e

xc
ha

ng
e,

 
an

io
n 

ex
ch

an
ge

 a
nd

 
de

riv
at

iz
at

io
n

W
at

er
 a

nd
 so

il
0.

05
 µ

g 
 L−

1  in
 g

ro
un

d-
w

at
er

 a
nd

 0
.0

03
 µ

g 
g−

1  
in

 so
il

78
%

 in
 so

il 
10

4%
 in

 
w

at
er

 sa
m

pl
es

B
ör

je
ss

on
 a

nd
 T

or
ste

ns
so

n 
(2

00
0)

H
PL

C
–U

V
 d

et
ec

tio
n

9-
Fl

uo
re

ny
lm

et
hy

lc
hl

or
o-

fo
rm

at
e 

(F
M

O
C

-C
l)

So
il 

an
d 

Se
di

m
en

t
0.

5/
5.

0 
m

g/
kg

 S
oi

l a
nd

 
se

di
m

en
ts

 0
.1

0–
0.

70
 m

g/
L 

w
at

er

82
.4

%
Pe

ru
zz

o 
et

 a
l. 

(2
00

8)

Io
n 

ch
ro

m
at

og
ra

ph
y

Fl
uo

rim
et

ric
A

ni
on

 e
xc

ha
ng

e 
m

et
ho

d 
(−

 0.
00

5 
M

 
 K

H
2P

O
4  

m
ob

ile
 p

ha
se

)

G
ro

un
dw

at
er

2 
µg

  L
−

1
25

%
M

al
la

t a
nd

 B
ar

ce
ló

 (1
99

8)

Ta
bl

e 
3 

 (c
on

tin
ue

d)



Environmental Chemistry Letters 

1 3

A
na

ly
tic

al
 te

ch
ni

qu
e

D
et

ec
to

r
M

et
ho

d
So

ur
ce

Sa
m

pl
e 

de
te

ct
io

n
Pe

rc
en

ta
ge

 R
ec

ov
er

y
Re

fe
re

nc
es

C
on

du
ct

iv
ity

 d
et

ec
tio

n 
(D

X
-1

00
)

Li
qu

id
–l

iq
ui

d 
ex

tra
ct

io
n 

us
in

g 
di

ch
lo

ro
m

et
ha

ne
A

qu
at

ic
 e

nv
iro

nm
en

t 
W

es
t L

ak
e

0.
04

2 
m

g 
m

L−
1

96
.4

 ~
 10

3.
2%

.
Zh

u 
et

 a
l. 

(1
99

9)

C
on

du
ct

iv
ity

 d
et

ec
to

r
D

io
ne

x 
m

od
el

 IC
S 

30
00

W
at

er
0.

05
–0

.7
5 

m
g/

L
90

–1
05

M
ar

qu
es

 e
t a

l. 
(2

00
9)

SP
E

La
se

r-i
nd

uc
ed

 fl
uo

re
s-

ce
nc

e 
de

te
ct

io
n

W
at

er
0.

4 
m

M
Jia

ng
 a

nd
 L

uc
y 

(2
00

7)

C
ou

pl
ed

 c
ol

um
n

Li
qu

id
 c

hr
om

at
og

ra
ph

y
W

at
er

0.
5–

10
 µ

g/
L

–
Sa

nc
ho

 e
t a

l. 
(1

99
6b

)
C

ou
pl

ed
 c

ol
um

n
Li

qu
id

 c
hr

om
at

og
ra

ph
y 

w
ith

 fl
uo

re
sc

en
ce

 d
et

ec
-

tio
n

C
er

ea
l

0.
5 

m
g/

kg
74

%
H

og
en

do
or

n 
et

 a
l. 

(1
99

9)

–
D

io
ne

x 
A

S1
8 

co
lu

m
n 

33
 m

M
 K

O
H

 so
lu

tio
n

N
at

ur
al

 w
at

er
38

 μ
g/

L
C

ou
tin

ho
 e

t a
l. 

(2
00

8)

Io
nP

ac
 A

S1
9 

co
lu

m
n 

35
 m

M
 K

O
H

 so
lu

tio
n

D
rin

ki
ng

 w
at

er
4.

8 
μg

/L
Q

iu
 e

t a
l. 

(2
01

3)

Io
nP

ac
 A

S1
9 

co
lu

m
n 

(2
50

 m
m

 ×
 0.

4 
m

m
) 

K
O

H
 so

lu
tio

n 
(g

ra
di

en
t 

el
ut

io
n)

D
rin

ki
ng

 w
at

er
2.

0 ×
 10

5  μ
g/

L
Ye

 e
t a

l. 
(2

01
1)

N
an

os
en

so
rs

C
ys

te
am

in
e-

st
ab

ili
ze

d 
go

ld
 n

an
op

ar
tic

le
s

Li
qu

id
–l

iq
ui

d 
ex

tra
ct

io
n

W
at

er
 sa

m
pl

e
0.

01
 m

g/
L

90
–1

05
%

M
ar

qu
es

 e
t a

l. 
(2

00
9)

C
ap

ill
ar

y 
el

ec
tro

ph
or

es
is

 
an

d 
el

ec
tro

ch
em

ilu
m

i-
ne

sc
en

ce
 d

et
ec

tio
n

C
ol

or
im

et
ric

 p
ro

be
 

(g
ly

ph
os

at
e,

 1
.2

 m
L 

of
 

th
e 

C
S-

A
uN

Ps
 so

lu
tio

n 
an

d 
1.

5 
m

L 
of

 H
A

c–
N

aA
c 

bu
ffe

r (
20

 m
M

, 
pH

 4
.0

)

En
vi

ro
nm

en
ta

l w
at

er
 

sa
m

pl
es

5.
88

 ×
 10

−
8  M

92
.7

6–
11

0.
10

%
Zh

en
g 

et
 a

l. 
(2

01
3)

C
ar

bo
n 

di
su

lp
hi

de
 to

 
fo

rm
 d

ith
io

ca
rb

am
ic

 
ac

id
 (U

V
 d

et
ec

to
r)

A
lu

m
in

a-
co

at
ed

 ir
on

 
ox

id
e 

na
no

pa
rti

cl
es

W
at

er
 a

nd
 g

ua
va

 fr
ui

t 
ex

tra
ct

0.
3 

ng
 m

L−
1  in

 a
 w

at
er

 
sa

m
pl

e 
0.

01
 g

−
1  in

 
gu

av
a 

fr
ui

t

46
%

H
su

 a
nd

 W
ha

ng
 (2

00
9)

Sp
ec

tro
ph

ot
om

et
ric

So
lid

-p
ha

se
 e

xt
ra

ct
io

n 
of

 
gl

yp
ho

sa
te

 fr
om

 w
at

er
 

sa
m

pl
es

W
he

at
 g

ra
in

s a
nd

 w
at

er
 

sa
m

pl
es

1.
1 ±

 0.
17

3 
µg

 m
L−

1
80

.0
–8

7.
0%

, (
So

il)
95

.0
–1

02
%

 (W
he

at
 

gr
ai

ns
)

85
.0

–9
2.

0%
, W

at
er

 
sa

m
pl

es

Ja
n 

et
 a

l. 
(2

00
9)

Im
m

un
og

en
ic

 te
ch

ni
qu

es
EL

IS
A

Po
ly

cl
on

al
 a

nt
is

er
a

W
at

er
7.

6 
μg

/m
L

C
le

gg
 e

t a
l. 

(1
99

9)

EL
IS

A
H

ig
hl

y 
se

ns
iti

ve
 li

nk
er

-
as

si
ste

d 
en

zy
m

e-
lin

ke
d 

im
m

un
os

or
be

nt
 a

ss
ay

G
ro

un
dw

at
er

 a
nd

 w
at

er
0.

1 
μg

/L
Le

e 
et

 a
l. 

(2
00

2)

EL
IS

A
C

om
pe

tit
iv

e 
EL

IS
A

 
te

ch
ni

qu
e

Ta
p,

 g
ly

ph
os

at
e 

sp
ik

ed
 

an
d 

riv
er

 w
at

er
s

Ru
bi

o 
et

 a
l. 

(2
00

3)

EL
IS

A
A

ut
om

at
ed

 im
m

un
os

en
-

so
r

Im
m

un
oc

om
pl

ex
 c

ap
tu

re
 

as
sa

y 
pr

ot
oc

ol
0.

02
1 

μg
/L

G
on

zá
le

z-
M

ar
tín

ez
 e

t a
l. 

(2
00

5)

Ta
bl

e 
3 

 (c
on

tin
ue

d)



 Environmental Chemistry Letters

1 3

dihydrogen phosphate, followed by derivatization with 
9-fluorenylmethyl chloroformate (FMOC-CL) in acetoni-
trile (Aparicio et al. 2013). The estimation of glyphosate 
in water and soil samples with a limit of detection 0.1 µg/L 
and 0.006 µg/L, respectively, by GS/MS technique was also 
studied (Börjesson and Torstensson 2000). Despite the sim-
plicity in the process, this technique is not widely used for 
glyphosate detection due to the high cost and interface tech-
nology problems.

Capillary electrophoresis (CE)

Indirect detection is a good alternative because it reduces 
the time of analysis for analytes with little or no absorb-
ance. Few CE methods have been reported for glyphosate 
(Abdullah et al. 1995; Royer et al. 2000; Chen et al. 2007). 
To achieve a LOD of 0.06 g/L for glyphosate, online sam-
ple stacking and indirect UV detection was used for the 
detection of glyphosate which was later on improved by 
using off-line ion-exchange pre-concentration (Corbera 
et al. 2005). The detection of glyphosate in water by CE 
approach via indirect detection was also reported in which 
detection was made using glyphosate phthalate background 
electrolyte with 0.5 mM tetradecyl trimethyl ammonium 
bromide (TTAB) as an electro-osmotic flow modifier, fol-
lowed by separation under reverse polarity conditions and 
indirect detection (Cikalo et al. 1996). CE-laser-induced 
fluorescence detection of glyphosate in river water samples 
have been reported using ion-exchange solid-phase extrac-
tion (SPE) technique with detection limits of 0.04 nM. Bio-
Rad AG1-X8 anion exchanger beads were used for off-line 
extraction, and fluorescent labelling was carried out using 
naphthalene-2,3-dicarboxaldehyde (NDA)–cyanide allowing 
micellar electrokinetic chromatography (MEKC) separation 
followed by laser-induced fluorescence detection (LIF) with 
a violet diode laser (Jiang and Lucy 2007).

A CE-electrospray ionization mass spectrometry (CE-
ESI–MS) method for rapid and selective detection of glypho-
sate with a LOD of 10 ng/mL and minimal sample handling 
was also reported (Börjesson and Torstensson 2000). Use of 
improved technique of electrospray condensation nucleation 
light scattering detection (ESI-CNLSD) in combination with 
CE has been demonstrated for determination of glyphosate 
in environmental water directly (You et al. 2003). It should 
be pointed out, however, that CE seems to be a method of 
choice since it is much cheaper and less time-consuming if 
comparing HPLC.

Spectrophotometric analysis technique

The direct spectrophotometric and fluorometric method for 
determination of glyphosate has not been reported due to 
the absence of chromophore or fluorophore groups in the A
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structure of glyphosate. Reports are available for glyphosate 
estimation by forming coloured complexes with suitable rea-
gents and then analysing the complexes by UV–Vis or fluo-
rometric techniques. It is a simple selective spectrophoto-
metric method for the determination of glyphosate herbicide 
in the environmental and biological samples. The analysis 
involved the complex formation of glyphosate present in the 
soil, wheat grains and water samples with carbon disulphide 
and copper in ammonia. The yellow complex formed was 
analysed for its absorbance at 435 nm with a molar absorp-
tivity of 1.864 × 103 L  mol−1  cm−1. The recovery reported 
for different samples ranges from 80 to 102%. This method 
is simple with high sensitivity and can be easily applied to 
environmental samples (Jan et al. 2009).

Immunogenic techniques

ELISA is a cost-effective technique which enhances the 
temporal and spatial resolution to study the monitoring of 
glyphosate in water samples. It is a technique based on poly-
clonal antiserum for detection of glyphosate and its metabo-
lites in water samples. In this method, polyclonal antise-
rum reacts with the metabolite of glyphosate (AMPA). The 
detection limit is good with a value of 7.6 μg/mL having 
 IC50 value of 154 mL−1. A highly sensitive linker-assisted 
enzyme-linked immunosorbent assay for the analysis of 
glyphosate in groundwater and water samples was also 
reported which involves the derivatization of glypho-
sate using succinic anhydride which emits the binding of 
glyphosate to hapten molecule which effectively recognizes 
by linker-assisted enzyme-linked immunosorbent with high 
detection limit up to 0.1 μg/L (Lee et al. 2002). A new meth-
odology for detection of glyphosate based on competitive 
ELISA technique detects glyphosate and its metabolites 
in tap, glyphosate spiked and river waters. It is swift and 
extremely sensitive technique having a coefficient of varia-
tion between 10 and 19% in tap water (Rubio et al. 2003). An 
automated immunosensor based on immunocomplex cap-
ture assay protocol was devised in which the sensor is based 
on analyte derivatization which uses selective peroxidase 
enzyme tracer of glyphosate and antiserum of glyphosate. 
Its shows selectivity towards the glyphosate and its resi-
dues and shows a high range of detection up to 0.021 μg/L 
(González-Martínez et al. 2005). Detection of glyphosate 
in water has also been carried out using a conjunction of 
ELISA technique with traditional methods with a detection 
limit of 0.1 μg/L which shows a bimodal distribution of the 
samples (Byer et al. 2008). A functionalized oligopeptide-
based surface plasmon biosensor was also developed for the 
detection of glyphosate. An SPR gold sensor chip is coated 
with TPFDLRPSSDTR, and an oligopeptide was modified 
with a limit of detection up to 0.58 μM with a sensitivity 
of 1.02 RU/μM having high specificity against glyphosate 

derivatives (Ding and Yang 2013). Alternative approach 
based on ELISA for glyphosate detection in ground and 
surface water was developed. This method includes enzyme 
conjugate of glyphosate and a specified antibody mixture 
of glyphosate in a microtitre plate. This technique has high 
specificity, no laborious extraction and LOD ranges from 
0.05 to 0.12 ng/mL (Mörtl et al. 2013). Krüger et al. (2014) 
constructed a method to recover the glyphosate from meat 
samples using ELISA technique by homogenising the sam-
ples followed by centrifugation, and samples were tested 
by glyphosate-specific antibodies (Krüger et al. 2014). A 
label-free and simple colorimetric process for the detection 
of glyphosate and its metabolites was developed by Chang 
et al. (2016) which inhibits the activity of copper in peroxi-
dase which catalyses the oxidation of 3,3′,5,5′-tetramethylb-
enzidine (TMB) to oxidized TMB (oxTMB) in the presence 
of hydrogen peroxide with detection limit up to 1 μM with 
linear range 2–200 μM (Chang et al. 2016). For the detec-
tion of glyphosate, a sensitive fluorescence method was 
established based on immune reaction. Carbon dot labelled 
antibodies  (IgG-CDs) which have the ability for identifica-
tion of glyphosate were prepared by using environmentally 
friendly carbon dots (CDs) and glyphosate antibody  (IgG), 
 IgG-CDs. To visualize the in situ distribution of glyphosate 
in plant tissues, these  IgG-CDs could be used. The detection 
limit was of 8 ng/mL. The recovery ratio was found to be 
in the range between 87.4 and 103.7% (Wang et al. 2016).

Nanotechnology‑based biosensors

Considering the use of various nano-compounds, methods 
for quantification of glyphosate and its residues were also 
applied.

Cysteamine-stabilized gold nanoparticles (CS-AuNPs) 
were put to use for the detection of glyphosate in water by 
electrostatic interaction in acidic medium by observing 
peak shift in surface Plasmon band with a detection limit 
of 5.88 × 10−8 M, with the linear range of 0.500–7.00 μM 
(Zheng et al. 2013). An additional experiment was per-
formed that resulted in the development of gold DNA-coated 
nanoparticles biosensor which could effectuate the quantita-
tive analysis of sDNA on the basis of glyphosate concentra-
tion (Lee et al. 2010).

Chemical degradation of glyphosate

The chemical, photochemical and chemical with photo-
chemical methods have been reported for the degradation of 
glyphosate. Both glyphosate and AMPA degraded at 20 °C 
in dilute aqueous suspensions of birnessite {(Na0.3Ca0.1K0.1)
(Mn4+,  Mn3+)2O4 1.5H2O}, as over several days there was 
an accumulation of orthophosphate in solution. Here the 
abiotic degradation involved C–P bond cleavage at the Mn 
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oxide surface in case of AMPA (degradation product of 
glyphosate) and C–N bond cleavage in case of glyphosate 
and sarcosine. The degradation of glyphosate was faster 
than that of AMPA, and addition of  Cu2+ inhibited deg-
radation. Researchers were not able to detect glyphosate 
degradation in an equimolar solution of  MnCl2 (0.5 mM) 
in a similar experimental design. However, it was illus-
trated that the oxidation of  Mn2+ is better both in solution 
and on an inert surface, in the presence of glyphosate (4:1 
Mn-glyphosate molar ratio), which suggests the oxidative 
breakdown of glyphosate in the presence of  Mn2+ through 
the spontaneous oxygen-mediated oxidation of manganese 
(Barrett and McBride 2005). The electrochemical oxidation 
of glyphosate on  RuO2 and  IrO2 (dimensionally stable anode 
electrodes) have also been applied for its degradation. Elec-
trolysis was completed under galvanostatic control as a func-
tion of pH, glyphosate concentration, supporting electrolyte 
and current density. Oxide composition effect on glypho-
sate degradation was significant in the absence of chloride, 
and the use of chloride medium increases the oxidizing 
power. Ti/Ir0.30Sn0.70O2 was the best electrode material to 
oxidize glyphosate, and the influence of the oxide compo-
sition was meaningless. The oxidation of glyphosate was 
favoured at low pH values (Polubesova and Chefetz 2014). 
Complete glyphosate removal from the electrolyzed solution 
was obtained at 30 mA cm−2 and 4 h of electrolysis in the 
absence of chloride medium and 50 mA cm−2 in the presence 
of chloride medium (Aquino Neto and de Andrade 2009). 
In another study, density functional calculations to identify 
the vibrational bands of glyphosate and AMPA in surface-
enhanced Raman spectroscopy (SERS) and attenuated total 
reflectance Fourier transform infrared (ATR–FTIR) spectra 
experiments, to provide the abiotic degradation process of 
glyphosate into AMPA with an important role of metals. 
SERS confirms the presence of AMPA after glyphosate is 
deposited from aqueous solution on different metallic sur-
faces. In ATR–FTIR experiments, AMPA is also detected 
when glyphosate interacts with metallic ions in aqueous 
solution (Ascolani Yael et al. 2014).

According to early studies, in contrast to microbial metab-
olism photodegradation plays a very insubstantial role in the 
environmental decomposition of glyphosate (Rueppel et al. 
1977). However, the effect of artificial as well as sunlight on 
glyphosate in the water of varying qualities made some dif-
ferent findings. The results indicate that AMPA is the main 
breakdown product in the photolytic process and that AMPA 
is far more stable to photodegradation than the parent com-
pound (Lund-HØie and Friestad 1986). The photoinduced 
degradation of glyphosate in ferrioxalate system was also 
investigated under irradiation with a 250 W metal halide 
lamp (λ ≥ 365 nm). Photodegradation efficiency of glypho-
sate (represented by orthophosphates release) increased 
with decreasing the initial concentrations of glyphosate 

and Fe(III)/oxalate ratios. At acidic pH (3.5–5.0), 60.6% 
orthophosphate release was achieved, whereas efficiency 
dropped to 42.1% at pH 6.0. The photochemical process 
includes the predominant species of Fe(III), namely Fe 
 (C2O4)2− and Fe  (C2O4)3

3−, which leads to the formation of 
hydroxyl radicals in the presence of dissolved oxygen under 
UV–Vis irradiation.

The light absorption of glyphosate increased and acceler-
ated its degradation (by direct photolysis) upon its compl-
exation with Fe(III). It was shown by the ninhydrin test for 
primary amines that the glyphosate was attacked by hydroxyl 
radicals with C–N cleavage to yield AMPA and C–P cleav-
age to yield sarcosine. The decomposition of reactive radi-
cals produced through ligand-to-metal charge transfer of 
ferric–glyphosate complexes may increase the photodegra-
dation (Chen et al. 2007). The photocatalytic degradation 
of a glyphosate derivative had been analysed in aqueous 
suspensions of  TiO2 at different pH values. However,  Zn2+ 
has not shown to affect the photodegradation of glyphosate 
(Katz et al. 2015). Degradation was much efficient in alka-
line pH, whereas no adsorption occurs on the surface of 
the catalyst in the dark. Main degradation path involves the 
cleavage of the C–P bond producing sarcosine and glycine as 
intermediate products (Muneer and Boxall 2008). The pho-
tocatalytic degradation of glyphosate increases in alkaline 
medium and also in acidic medium. The photodegradation 
efficiency of glyphosate was found to be 66.9% at pH 2, 
36.2% at pH 6 and 49.4% at pH 12 (Chen and Liu 2007). UV 
light with  TiO2 immobilized on silica gel as photocatalyst 
has also been used for the degradation of glyphosate along 
with acephate and dimethoate. Within 60 min of photo-
catalytic treatment, 100% decomposition of dimethoate and 
glyphosate was achieved, while total degradation of ace-
phate was observed after 105 min of treatment. Following 
the Langmuir–Hinshelwood apparent first-order degradation 
kinetics, acephate and dimethoate decomposition showed 
only the photocatalytic nature of pesticide disappearance, 
whereas glyphosate decomposition followed both adsorption 
and photocatalytic reactions. Production of heteroatoms at 
their highest oxidized states  (SO4

2−,  NO3
−, and  PO4

3−) made 
to conclude that pesticide degradation occurred primarily 
through photocatalytic oxidation reactions. Unlike other 
degradation treatments, unavailability of toxic intermedi-
ates reveals swift destruction of the pesticides into harmless 
by-products using this system (Echavia et al. 2009).

The combination of  H2O2 and UV radiation was also used 
for glyphosate degradation. Three factors, namely effects of 
initial pH,  H2O2 initial concentration and incident radiation, 
were studied. Degradation increases significantly from pH 
3–7, and increase becomes much less noticeable above this 
pH. The reaction rate was dependent on initial herbicide 
concentration, had an optimum plateau of  H2O2 to glypho-
sate molar concentration ratio between 7 and 19 and was 



Environmental Chemistry Letters 

1 3

nonlinearly dependent on irradiation rate. It was also pos-
sible to identify the critical reaction intermediaries and to 
quantify the main end products (Manassero et al. 2010). In 
an attempt to study the degradation of glyphosate in water, 
various advanced oxidation processes that included ozona-
tion at pH 6.5 and 10, photolysis and heterogeneous pho-
tocatalysis (where  TiO2 was used as a semiconductor and 
dissolved oxygen as an electron acceptor) were used. Analy-
sis of three required factors, viz. the degree of glyphosate 
degradation, the reactions kinetics and the formation of the 
major metabolite, AMPA, was performed. Ozonation at pH 
10 leads to the maximum degradation of glyphosate which 
followed the first-order kinetics with a half-life of 1.8 min 
(Assalin et al. 2010).

To explore the C–P bond cleavage mechanism, generation 
of phosphonates by UV photo-oxidation and to trace their 
sources in the environment, the stable oxygen isotope analy-
sis was applied. Glyphosate and phosphonoacetic acid were 
used as model compounds and effectively degraded after 
exposure to UV irradiation. In corroboration with previous 
suggested mechanisms of UV-photon excitation reactions, 
it was found out that both ambient water and atmospheric 
oxygen were responsible for the C–P bond cleavage. Both 
the phosphonates used are having markedly lower values 
when compared to naturally derived organophosphorus com-
pounds as indicated by the calculation of oxygen isotopic 
composition of the original phosphonate  P−moiety (Sandy 
et al. 2013). In an attempt to study the role of  Fe3+ as a 
natural photosensitizer towards the decomposition of organic 
phosphorus to release phosphate, glyphosate was used as the 
organic phosphorus model in deionized and natural waters 
under UV and sunlight irradiation. Degradation by  Fe3+ was 
confirmed by the decrease in glyphosate concentration and 
total organic contents in both  Fe3+/UV and  Fe3+/sunlight 
systems. The released amount of phosphate was higher in 
the presence of  Fe3+ than control, and the rate of generation 
of phosphate increased with increasing  Fe3+ concentrations 
(Jiang et al. 2016).

With a step ahead, some photocatalysts were prepared 
and applied for the degradation of glyphosate. In a simi-
lar advancement, manganese dioxide/graphite  (MnO2/C) 
composite was used as a photocatalyst for the degradation 
of glyphosate, through high energy electron beam irradia-
tion. This type of radiation is effectively helpful in reducing 
 MnO4

− to  MnO2 nanospheres via the reducing nature of  e−, 
e−

aq and ·H, as well as make graphite possess rough surface 
by an electron beam having thermal and sputtering effects. 

Moreover, numerous hydroxyl groups are introduced on the 
surface of  MnO2 nanospheres by the process of fabrication, 
thereby promoting the adhesion of  MnO2 nanospheres on 
the rough surface of graphite via hydrogen bonding. There-
fore, the resultant  MnO2/C composite has large specific sur-
face area and a high dispersion and therefore forms to be an 
excellent adsorbent having greater catalytic degradation per-
formance on glyphosate (Wang et al. 2016). Similarly, vis-
ible-light-driven bismuth vanadate  (BiVO4) photocatalysts, 
prepared by the co-precipitation method and characterized 
by using X-ray diffraction, UV–visible diffuse reflectance, 
electrochemical impedance spectroscopy, photocurrent, as 
well as electron microscopy (SEM, TEM), were used for the 
degradation of glyphosate. The photocatalytic activity of the 
as-prepared  BiVO4 samples was tested through the photocat-
alytic oxidation of glyphosate under visible light irradiation. 
The  BiVO4 sample calcined at 400 °C showed the highest 
photocatalytic activity for glyphosate degradation under vis-
ible light irradiation because of its high charge separation 
efficiency is proven by electrochemical impedance spectros-
copy and photocurrent (Huo et al. 2017). In another attempt 
to use a chemical with photochemical phenomena for the 
degradation of glyphosate, electrolysis and photoelectroly-
sis with diamond anodes were applied. Results showed that 
photolysis used singly is not as efficient technique as coupled 
with electrolysis for the removal of the pesticide. The use 
of a combined technique leads to the production of higher 
concentrations of free radicals from the photoactivation of 
the oxidants electrogenerated. As a result of the generation 
of different oxidant species (peroxocarbonates, peroxosul-
fates and hypochlorite), the supporting electrolyte plays an 
important role in the removal of glyphosate, as these spe-
cies also contribute to its degradation. Because of the strong 
relationship between current density and the oxidants pro-
duced on the anode surface, the removal of glyphosate is 
also influenced by the former (current density) (Rubí-Juárez 
et al. 2016).

Possible degradation pathways of glyphosate

Glyphosate is a frequently used herbicide worldwide which 
has the capability of rapid degradation in soils, particularly 
by microbial processes. AMPA forms to be the most com-
monly found degraded product of glyphosate in water and 
soil (Barrett and McBride 2005; Grandcoin et al. 2017) 
(Fig. 5).

Fig. 5  Structure of glyphosate 
and AMPA
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Several possible reaction pathways have been proposed 
for the degradation of glyphosate. According to Barrett and 
McBride (2005), the degradation is accomplished by using 
manganese oxide with the intermediate sarcosine, which 
finally produces glycine and formic acid (Fig. 6).

Chen et al. (2007) employed the Fe(III)/H2O2/UV pro-
cess for degradation, proposed the cleavage of C–N and C–P 
bonds and attributed the process to the existence of hydroxyl 
radicals (Fig. 7).

The degradation in aqueous suspensions of titanium diox-
ide at low and high pH values proposed the formation of 
sarcosine from low pH and direct generation of glycine at 
high pH (Muneer and Boxall 2008) (Fig. 8). 

There is a tentative pathway for the degradation of 
glyphosate by photocatalysis using  TiO2 as a catalyst 
(Echavia et al. 2009). The pathway is presented in Fig. 9.

The photodegradation pathway of glyphosate with the 
 H2O2/UV system shows the glycine, formaldehyde, formic 
acid, nitric acid along with some radicals and ions as the 
main intermediates were also reported (Assalin et al. 2010) 
and the reaction pathway summarized in Fig. 10.

Fig. 10  Photodegradation pathway of glyphosate in the presence of 
the  H2O2/UV system

Fig. 6  Photodegradation pathway of glyphosate in the presence of manganese oxide

Fig. 7  Photodegradation pathway of glyphosate in the presence of 
Fe(III)/H2O2

Fig. 8  Photodegradation 
pathway of glyphosate in the 
presence of  TiO2 at low pH and 
high pH

Fig. 9  Photocatalytic pathway of glyphosate in the presence of immo-
bilized  TiO2
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Therefore, we can conclude that the degradation pathway 
of glyphosate, whether chemical, photochemical or chemical 
with photochemical, is dependent on the technique used.

Microbial degradation of glyphosate

Glyphosate hardly produce physicochemical effects (hydrol-
ysis, photolysis), but there are microbial enzymatic systems 
that cleave the C–P bond and can lead to its degradation. 
Phosphorus present in glyphosate is a driving force for its 
microbial degradation, as the microorganisms use this phos-
phorus for their metabolic functions (Briceño et al. 2007). A 
number of microbial species and strains have been shown to 
exhibit glyphosate metabolism as listed in Table 4. Microbial 
degradation pathway involves the cleavage of glyphosate to 
glyoxylate and aminomethylphosphonic acid by the enzyme 
glyphosate oxidoreductase (Fan et al. 2012). An alternate 
pathway for its degradation involves its conversion to meth-
ylamine and inorganic phosphate in the presence of enzyme 
C–P lyase (Sviridov et al. 2012; Fu et al. 2017). Microorgan-
isms later consume methylamine and glyoxylate (Shushkova 
et al. 2012). Glycine oxidase acts upon glyphosate leading to 
its conversion to aminomethylphosphonic acid and glyoxy-
late (Pollegioni et al. 2011). C–P lyase causes degradation 
of glyphosate to initially inorganic phosphate and sarcosine, 
then formaldehyde and glycine. Formaldehyde and glycine 
are consumed by the microorganism present in soil (Dick 
and Quinn 1995). The strong adsorption capacity of soil 
towards glyphosate slows down the process of its degrada-
tion by microorganisms. Hence, it has an average half-life 
of more than two months.

Further, the type of microbial community in the soil 
affects the rate of degradation (Tu et al. 2011). Microbes 
release enzymes that cleave the C–P bond of the glyphosate 
molecule. Similar metabolic processes have been reported in 
a Pseudomonas PG 2982 strain that breaks glyphosate into 
phosphorous (Moore et al. 1983; Jacob et al. 1985, Lane 
et al. 2012). Microbial species, viz. Rhizobium meliloti, 
Arthrobacter GLP-1, and Agrobacterium radiobacter exhibit 
analogous pathway for glyphosate degradation (Pipke et al. 
1987; McAuliffe et al. 1990; Liu et al. 1991; Dick and Quinn 
1995). According to Pipke and Amrhein (1988) and Obo-
jska et al. (1999), bacterial strain Arthrobacter GLP-1/Nit-1 
exploits glyphosate as nitrogen source while Streptomyces 
spp. consumes it for both phosphorus and nitrogen.

Enzymatic degradation for the breakdown of glyphosate 
results in the development of glyoxylate and aminomethyl 
phosphonic acid (AMPA) in which oxidoreductase aids the 
splitting of the C–N (Barry et al. 1992). The second pathway 
is through the initial C–P lyase activity which splits the C–P 
bond in the second pathway to give sarcosine, glycine and 
formaldehyde (Sviridov et al. 2012).

This metabolic pathway was first reported in 1983 in 
which Pseudomonas PG2982 strain was able to degrade 
glyphosate as a sole phosphorus source (Jacob et al. 1985). 
Consequently, the pathway was recognized in other micro-
organisms including an Agrobacterium radiobacter, Arthro-
bacter GLP-1 strain, Rhizobium meliloti and other Rhizo-
bium strains (Pipke et al. 1987; McAuliffe et al. 1990; Liu 
et al. 1991; Dick and Quinn 1995). Altogether the above 
strains utilizes parent compound as a sole phosphorus 
source, but were unable to utilize the complex as either 
carbon or nitrogen source. This was accredited to the pres-
ence of an uptake regulation system for glyphosate in most 
phosphonate-degrading microorganisms which limits organ-
ophosphonate utilization since the phosphorus unconfined 
after breaking of the C–P bond represses the degradation 
system (Obojska et al. 1999). Conversely, a mutant of the 
Arthrobacter strain GLP-1, named Arthrobacter GLP-1/Nit-
1, could use glyphosate as its sole nitrogen source as well 
(Pipke and Amrhein 1988). It was revealed that the incapa-
bility of Arthrobacter GLP-1 strain to utilize glyphosate as a 
nitrogen source is due to the rigorous control of glyphosate 
uptake by surplus phosphate released during the degrada-
tion of the herbicide. A similar skill to utilize glyphosate as 
both phosphorus and nitrogen source was described for two 
Streptomyces spp. (Obojska et al. 1999).

In the second pathway, glyphosate is degraded to AMPA 
and glyoxylate by cleavage of the C–N bond. The previ-
ous metabolite is exposed to dephosphorylation by enzyme 
C–P lyases, leading to the formation of methylamine and 
formaldehyde and is finally mineralized to  CO2. Methyl-
amine is produced by the alteration of several pesticides, 
including carbofuran and atrazine, and serves as a carbon 
and/or nitrogen source for microorganisms (Chapalamadugu 
and Chaudhry 1992). This pathway was initially reported to 
occur in a Flavobacterium sp., which was isolated from an 
industrial biosystem dispensation glyphosate wastes (Balt-
hazor and Hallas 1986).

Flavobacterium sp. was able to take glyphosate as a sole 
source of phosphorus. After that, the same pathway was 
apparent in cultures of a Pseudomonas LBr strain, isolated 
from a glyphosate waste treatment which uses glyphosate 
as the sole energy of phosphorus (Jacob et al. 1988). While 
the AMPA pathway was recognized as the major degrada-
tion pathway of glyphosate by this strain, Pseudomonas LBr 
strain was also able to convert about 5% of the initially added 
glyphosate via formation of sarcosine and glycine. This was 
the first and solitary report of a glyphosate-degrading micro-
organism that could degrade the compound via both meta-
bolic routes. Arthrobacter atrocyaneus and Pseudomonas 
pseudomallei were also reported to metabolize glyphosate 
via the same AMPA pathway ((Pipke and Amrhein 1988; 
Peñaloza-Vazquez et al. 1995). Geobacillus caldoxylosilyti-
cus T20 strain being thermophilic isolated from a heating 
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Table 4  Microorganisms involved in the biodegradation of glyphosate under in situ and experimental conditions

Microbial species Geographical 
location/region

Intermediate/end products Source References

Achromobacter sp. Rhizobium 
radiobacter)

USA AMPA Sludge McAuliffe et al. (1990)

Achromobacter sp. MPS 12 A Russia Sacrosine Soil Sviridov et al. (2012)
Achromobacter sp. 16 kg Russia – Soil Shushkova et al. (2012)
Agrobacterium radiobacter US Putatively sarcosine Wastewater Wackett et al. (1987)
Alcaligenes sp. GL Germany AMPA (5%) and sarcosine 

(95%)
Selective medium Lerbs et al. (1990)

Arthrobacter atrocyaneus 
ATCC 13752

Germany AMPA Microbial collection Pipke and Amrhein (1988)

Arthrobacter sp GLP-1 USA Sarcosine Selective medium Pipke et al. (1987)
Aspergillus niger Poland AMPA Soil Krzyśko-Łupicka and Orlik 

(1997)
Aspergillus niger Nigeria AMPA and sarcosine Soil Adelowo et al. (2014)
Aspergillus oryzae A-F02 China AMPA and methylamine Soil Fu et al. (2017)
A. section Flavi and A. niger Argentina – – Carranza et al. (2017)
Bacillus subtilis India AMPA and methylamine Soil (Singh et al. 2019)
Bacillus cereus CB4 China AMPA, glyoxylate, sarcosine, 

glycine and formaldehyde
Soil Fan et al. (2012)

Comamonas odontotermitis P2 Pakistan – Soil Firdous et al. (2017)
Flavobacterium sp GD1 Missouri AMPA Sludge Balthazor and Hallas (1986)
Fusarium oxysporum Nigeria AMPA and sarcosine Soil Adelowo et al. (2014)
Geobacillus caldoxylosilyticus 

T20
UK AMPA – Obojska et al. (2002)

Ochrobactrum anthropi GDOS Iran AMPA Soil Hadi et al. (2013)
Ochrobactrum anthropi GPK 3 Russia – Soil Shushkova et (al. 2012)
O. anthropi GPK 3 Russia AMPA Soil Sviridov et al. (2012)
O. anthropi LBAA UK AMPA Soil Obojska et al. (2002)
O. anthropi S5 USA AMPA Soil Gard et al. (1997)
Pseudomonas pseudomallei USA AMPA Soil Peñaloza-Vazquez et (al. 1995)
Pseudomonas sp. 4ASW UK Sarcosine Soil Dick and Quinn (1995)
Pseudomonas sp. LBr Missouri AMPA (95%), sarcosine (5%) Sludge Jacob et al. (1988)
Pseudomonas sp. PG298231 Louisiana Sarcosine Mixed culture Moore et al. (1983)
Rhizobium leguminosarum India AMPA and methylamine Soil Singh et al. (2019)
Rhizobium meliloti 1021 Massachusetts Sarcosine Mutation of the wild strain Liu et al. (1991)
Streptomyces sp. India AMPA and methylamine Soil (Singh et al. 2019)
Streptomyces sp. StC Poland Sarcosine Sludge Obojska et al. (1999)
Penicillium notatum Poland AMPA Mutation of the wild-type Bujacz et al. (1995)
Salinicoccus spp Iran AMPA Soil Sharifi et al. (2015)
Scopulariopsis sp. Poland AMPA Soil Krzyśko-Łupicka and Orlik 

(1997)
Trichoderma harzianum Poland AMPA Soil Krzyśko-Łupicka and Orlik 

(1997)
Trichoderma viridae Nigeria AMPA and sarcosine Soil (Adelowo et al. 2014)
Trichoderma viride Strain 

FRP 3
Indonesia – Soil Arfarita et al. (2016)

Ochrobactrum anthropi GPK 3 
Achromobacter sp. 16 kg

Russia – Soil Shushkova et al. (2012)
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system was able to utilize glyphosate as an energy source of 
phosphorus (Obojska et al. 2002). Degradation of glyphosate 
by the thermophilic strain Geobacillus caldoxylosilyticus 
T20 led to the formation of glyoxylate and AMPA. Bacil-
lus cereus CB4 is able to utilize glyphosate in an incuba-
tion period of 5 days via two concurrent pathways in which 
glyphosate is degraded into AMPA, glyoxylate, sarcosine, 
glycine and formaldehyde as a product (Fan et al. 2012). 
Ochrobactrum anthropi GPK 3 and Achromobacter sp. KG 
16 utilize glyphosate as a source of carbon and phosphorous 
using batch fermentation technique (Shushkova et al. 2012). 
Comamonas odontotermitis P2 degrades glyphosate via CP 
lyase and GOX metabolic pathways using glyphosate as a 

sole source of carbon and phosphorus (Firdous et al. 2017). 
The generalized metabolic pathways of glyphosate biodeg-
radation are mentioned in Fig. 11. 

Apart from bacteria and actinomycetes, fungi have been 
revealed to degrade glyphosate. The isolation of a fun-
gal strain, Penicillium citrinum, which could metabolize 
glyphosate were first reported by Zboińska et al. (1992). 
Later P. notatum was isolated in a study that metabolized 
glyphosate by using AMPA pathway (Bujacz et al. 1995). 
Fungal strains, including Scopulariopsis sp., Trichoderma 
viride, T. harzianum, Alternaria sp. and A. niger isolated 
from soil, showed an improved ability to grow on numerous 
organophosphates including glyphosate (Krzyśko-Łupicka 

Fig. 11  Metabolism pathways of glyphosate biodegradation
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and Orlik 1997). These fungal strains use glyphosate via 
the AMPA pathway. Other species of the Aspergillus genus 
such as A. flavi and A. niger utilize glyphosate as a single 
source of phosphorus or nitrogen and are potent to grow in 
glyphosate environmental conditions (Carranza et al. 2017). 
All the reported above fungal strains utilize glyphosate as 
a source of phosphorus. A number of fungal species have 
been isolated including Penicillium simplicissimum, Mucor 
sp., Penicillium janthinellum and Alternaria alternata from 
non-disinfected carrot seeds, which utilizes glyphosate as 
a phosphorus source, that have also been reported (Javaid 
et al. 2016).

Complexation chemistry of glyphosate with metal 
ions and humic acid

Glyphosate (world top-ranked herbicide) has three func-
tional groups (P-OH, NH and COOH) for strong coordina-
tion chemistry with metal ions at variable pH values (Thelen 
et al. 1995; Sundaram and Sundaram 1997; Gimsing and 
dos Santos 2005; Duke et al. 2012; Kaur et al. 2017; Singh 
et al. 2017).

Glyphosate has the capability to get adsorbed on the soil 
surface and humic substances over a wide range of pH owing 
to strong interactions through OH (two P-OH and one of 
the COOH). These OH groups complex with metal ions and 
therefore aid in the adsorption onto the soil surface at agri-
cultural pH range 3.5–9.0 (Sundaram and Sundaram 1997; 
Gimsing and dos Santos 2005; Kaur et al. 2017; Singh et al. 
2017). Simultaneously, it should be noted that glyphosate 
forms stable complexes with metal ions present in the soil. 
Stable complexation causes the depletion of important metal 
ions of soils, and these metal ions are very important for 
the plant growth (Sundaram and Sundaram 1997; Gimsing 
and dos Santos 2005; Kumar et al. 2015a, b, c, d, 2016, 
2017; Singh et al. 2016, 2017; Kaur et al. 2017). Glypho-
sate interacts with clay minerals as it forms complexes with 
interlayer metal ions. In literature, a study on 1:1 and 2:1 
complexation of glyphosate with transition metal had shown 
stability order: Mn(II) > Zn(II) > Cu(II) > Fe(II) (Sundaram 
and Sundaram 1997; Gimsing and dos Santos 2005; Kaur 
et al. 2017; Singh et al. 2017). UV–visible-, FTIR- and 
NMR-based studies on glyphosate interactions with alkaline 
and first transition metal ions series have been reported by 
various authors. Glyphosate-to-metal ion binding occurred 
through the amino, carboxylic and phosphonic moieties that 
lead to the formation of thermodynamically and chemically 
stable five-membered rings (Sundaram and Sundaram 1997; 
Gimsing and dos Santos 2005; Duke et al. 2012; Kaur et al. 
2017; Singh et al. 2017).

As humic substances form mixed metal and mixed ligand 
complexes of different stability, transport of the essential 
metal ions is significantly affected by variation in stability 

factors of these complexes. Humic acid is an important part 
of soils; recently, various authors have shown interest in 
the coordination behaviour of glyphosate in the presence 
of humic acid. Humic acid rich with phenoxyl, hydroxyl 
and carboxyl reactive groups forms the coordinate bond 
with metal ions and hydrogen bond with pesticides includ-
ing the glyphosate (Undabeytia et al. 1996; Maqueda et al. 
1998; Gimsing and dos Santos 2005; de Santana et al. 2006; 
Khoury et al. 2010; Mazzei and Piccolo 2012). Humic acid 
containing salicylate moiety, which generally forms the 
square planar complex with metal ions, and pesticides join 
axially or form a second bidentate chelate ring in the equa-
torial position. Axial bond formation with the metal–humic 
acid system in reaction mixture occurred through the 
most donating sites (P=O > N–H > C=O) of glyphosate. 
Glyphosate interacts with humic acid-to-metal ion complex 
(HA-M(II)) through inner-sphere complexes formation 
mechanism (Undabeytia et al. 1996; Maqueda et al. 1998; 
de Santana et al. 2006). The main mode of interaction of 
glyphosate with HA-M(II) complexes and adsorption on soil 
or clay minerals was through the phosphonic moieties of 
glyphosate. Few studies have shown that at low concentra-
tion level, glyphosate forms inner-sphere complexes with 
HA-M(II) through phosphonic moieties by ligand exchange 
mechanism, whereas at higher concentration, extra glypho-
sate binds by hydrogen bonding mechanism to humic acid 
and already bound glyphosate molecules (Undabeytia et al. 
1996; Maqueda et al. 1998; Gimsing and dos Santos 2005; 
de Santana et al. 2006; Khoury et al. 2010; Mazzei and Pic-
colo 2012). The literature has shown that the correct order 
of stability of simple metal/glyphosate complexes ratios is 
1:1 < 1:2 < 1:3 (Undabeytia et al. 1996; Maqueda et al. 1998; 
de Santana et al. 2006).

Derivatization of glyphosate: a way ahead

Derivatization of glyphosate may have two kinds of aspects: 
(1) to detect it in various environmental matrixes and (2) to 
synthesize new derivatives with high efficiency and least tox-
icity. Glyphosate is highly soluble in water (1.01 g/100 mL 
at 20 °C) and easily binds with soils; consequently, it has a 
minimum runoff in the polar matrix. It has been detected in 
environmental matrixes in residual levels, and due to lack 
of chromophoric and fluorophoric groups, it is detectable 
through derivatization only. Recent review revealed that 
derivatization is commonly done by acylating agents, alkyl 
chloro or fluoro formates, benzenesulfonyl and phthalalde-
hyde (Gill et al. 2017). Derivatized products are analysed 
by using the advanced techniques including the gas (GC) or 
liquid chromatographic (LC) techniques. At same time, other 
techniques like UV–visible, electrophoresis, sensor-based 
techniques, etc., have been discussed in depth by Gill et al. 
(2017). GC and LC were the best techniques to detect the 
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derivatized products, where 10–15 pg (Picogram) of glypho-
sate and its decomposed products have been detected with 
excellent recovery.

Various authors have made an attempt to synthesize new 
derivatives of glyphosate with high efficiency and least tox-
icity. Recently, derivative of glyphosate has been synthe-
sized having excellent herbicidal activities than glyphosate, 
more significantly least toxic to the plant growth-promoting 
strains (Kumar et al. 2017). Also, photopolymerizable and 
thiocarboxylate-S-esters derivatives of glyphosate have been 
synthesized with good biological activities (Bogdanova et al. 
2007). Chen et al. (2015) have developed a series of novel 
α-amino phosphonate derivatives containing a pyrimidi-
nyl moiety that was also developed which was biologically 
active, but having less herbicidal activities than glyphosate. 
In a nutshell, researchers are looking for the future plant-
protecting agent or glyphosate derivative with excellent her-
bicidal activities as compared to glyphosate.

Conclusion

Glyphosate has covered a long journey from its use to the 
world’s top-selling herbicide. It has huge potential for agri-
culture due to lower toxicity among other herbicides and 
excellent water solubility. Due to least toxicity, and excel-
lent water solubility, it has been used excessively all over 
the world. Consequently, it has entered the water and soil 
system. The long half-life period of glyphosate under dif-
ferent environmental conditions is the major concern of the 
future. In the future, there is a need to identify or isolate 
microorganisms that aid in the decomposition of glypho-
sate within a short time period under different environmen-
tal conditions. Development of analytical methods for the 
detection of glyphosate is equally important because it has 
no chromophoric and fluorophoric groups. Also, the syn-
thesis of derivatives of glyphosate with least toxicity and 
maximum efficiency is also an important gap to fill in the 
future. Use of nanoparticles for photocatalytic degradation 
will result in an appreciable reduction in the glyphosate 
amount in the environmental matrices. The combination of 
nanoparticles with bioadsorbents to form nanocomposites is 
expected to show improved performance in terms of the high 
efficiency of photoinduced charge separation, photostability, 
better adsorption and improved performance.
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