skip to Main Content

Duty et al., 2003

Duty, S. M., Singh, N. P., Silva, M. J., Barr, D. B., Brock, J. W., Ryan, L., Herrick, R. F., Christiani, D. C., & Hauser, R.; “The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay;” Environmental Health Perspectives, 2003, 111(9), 1164-1169; DOI: 10.1289/ehp.5756.

ABSTRACT:

Phthalates are industrial chemicals widely used in many commercial applications. The general population is exposed to phthalates through consumer products as well as through diet and medical treatments. To determine whether environmental levels of phthalates are associated with altered DNA integrity in human sperm, we selected a population without identified sources of exposure to phthalates. One hundred sixty-eight subjects recruited from the Massachusetts General Hospital Andrology Laboratory provided a semen and a urine sample. Eight phthalate metabolites were measured in urine by using high-performance liquid chromatography and tandem mass spectrometry; data were corrected for urine dilution by adjusting for specific gravity. The neutral single-cell microgel electrophoresis assay (comet assay) was used to measure DNA integrity in sperm. VisComet image analysis software was used to measure comet extent, a measure of total comet length (micrometers); percent DNA in tail (tail%), a measure of the proportion of total DNA present in the comet tail; and tail distributed moment (TDM), an integrated measure of length and intensity (micrometers). For an interquartile range increase in specific gravity-adjusted monoethyl phthalate (MEP) level, the comet extent increased significantly by 3.6 micro m [95% confidence interval (95% CI), 0.74-6.47]; the TDM also increased 1.2 micro m (95% CI, -0.05 to 2.38) but was of borderline significance. Monobutyl, monobenzyl, monomethyl, and mono-2-ethylhexyl phthalates were not significantly associated with comet assay parameters. In conclusion, this study represents the first human data to demonstrate that urinary MEP, at environmental levels, is associated with increased DNA damage in sperm.  FULL TEXT


Back To Top