Bibliography Tag: 2 4 d and cancer risks

Hayes et al., 1991

Hayes, H. M., Tarone, R. E., Cantor, K. P., Jessen, C. R., McCurnin, D. M., & Richardson, R. C.; “Case-control study of canine malignant lymphoma: positive association with dog owner’s use of 2,4-dichlorophenoxyacetic acid herbicides;” Journal of the National Cancer Institute, 1991, 83(17), 1226-1231; DOI: 10.1093/jnci/83.17.1226.


A hospital-based case-control study of companion dogs examined the risk of developing canine malignant lymphoma associated with the use of chemicals in and about the home. Information from a self-administered owner questionnaire and/or a telephone interview of about 491 cases, 466 nontumor controls, and 479 tumor controls indicated that owners in households with dogs that developed malignant lymphoma applied 2,4-dichlorophenoxyacetic acid (2,4-D) herbicides to their lawn and/or employed commercial lawn care companies to treat their yard significantly more frequently than control owners (odds ratio = 1.3). In addition, the risk of canine malignant lymphoma rose to a twofold excess with four or more yearly owner applications of 2,4-D. The findings in this study are consistent with occupational studies in humans, which have reported modest associations between agricultural exposure to 2,4-D and increased risk of non-Hodgkin’s lymphoma, the histology and epidemiology of which are similar to those of canine malignant lymphoma. The present study suggests that human health implications of 2,4-D exposure in the home environment should receive further investigation. FULL TEXT

Pahwa et al., 2012

Pahwa, M., Harris, S. A., Hohenadel, K., McLaughlin, J. R., Spinelli, J. J., Pahwa, P., Dosman, J. A., & Blair, A., “Pesticide use, immunologic conditions, and risk of non-Hodgkin lymphoma in Canadian men in six provinces,” International Journal of Cancer, 2012, 131(11), 2650-2659. DOI: 10.1002/ijc.27522.


Pesticide exposures and immune suppression have been independently associated with the risk of non-Hodgkin lymphoma (NHL), but their joint effect has not been well explored. Data from a case-control study of men from six Canadian provinces were used to evaluate the potential effect modification of asthma, allergies, or asthma and allergies and hay fever combined on NHL risk from use of: (i) any pesticide; (ii) any organochlorine insecticide; (iii) any organophosphate insecticide; (iv) any phenoxy herbicide; (v) selected individual pesticides [1,1′-(2,2,2-trichloroethylidene)bis[4-chlorobenzene]; 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT), malathion, (4-chloro-2-methylphenoxy)acetic acid (MCPA), mecoprop, and (2,4-dichlorophenoxy)acetic acid (2,4-D); and (vi) from the number of potentially carcinogenic pesticides. Incident NHL cases (n = 513) diagnosed between 1991 and 1994 were recruited from provincial cancer registries and hospitalization records and compared to 1,506 controls. A stratified analysis was conducted to calculate odds ratios (ORs) adjusted for age, province, proxy respondent, and diesel oil exposure. Subjects with asthma, allergies, or hay fever had non-significantly elevated risks of NHL associated with use of MCPA (OR = 2.67, 95% confidence interval [CI]: 0.90-7.93) compared to subjects without any of these conditions (OR = 0.81, 95% CI: 0.39-1.70). Conversely, those with asthma, allergies, or hay fever who reported use of malathion had lower risks of NHL (OR = 1.25, 95% CI: 0.69-2.26) versus subjects with none of these conditions (OR = 2.44, 95% CI: 1.65-3.61). Similar effects were observed for asthma and allergies evaluated individually. Although there were some leads regarding effect modification by these immunologic conditions on the association between pesticide use and NHL, small numbers, measurement error and possible recall bias limit interpretation of these results. FULL TEXT


McDuffie et al., 2001

Helen H. McDuffie, Punam Pahwa, John R. McLaughlin, John J. Spinelli, Shirley Fincham, James A. Dosman, Diane Robson, Leo F. Skinnider and Norman W. Choi, “Non-Hodgkin’s Lymphoma and Specific Pesticide Exposures in Men: Cross-Canada Study of Pesticides and Health,” Cancer Epidemiology, Biomarkers, & Prevention, 2001, 10.


Our objective in the study was to investigate the putative associations of specific pesticides with non-Hodgkin’s Lymphoma [NHL; International Classification of Diseases, version 9 (ICD-9) 200, 202]. We conducted a Canadian multicenter population-based incident, case (n = 517)-control (n = 1506) study among men in a diversity of occupations using an initial postal questionnaire followed by a telephone interview for those reporting pesticide exposure of 10 h/year or more, and a 15% random sample of the remainder. Adjusted odds ratios (ORs) were computed using conditional logistic regression stratified by the matching variables of age and province of residence, and subsequently adjusted for statistically significant medical variables (history of measles, mumps, cancer, allergy desensitization treatment, and a positive history of cancer in first-degree relatives). We found that among major chemical classes of herbicides, the risk of NHL was statistically significantly increased by exposure to phenoxyherbicides [OR, 1.38; 95% confidence interval (CI), 1.06–1.81] and to dicamba (OR, 1.88; 95% CI, 1.32–2.68). Exposure to carbamate (OR, 1.92; 95% CI, 1.22–3.04) and to organophosphorus insecticides (OR, 1.73; 95% CI, 1.27–2.36), amide fungicides, and the fumigant carbon tetrachloride (OR, 2.42; 95% CI, 1.19–5.14) statistically significantly increased risk. Among individual compounds, in multivariate analyses, the risk of NHL was statistically significantly increased by exposure to the herbicides 2,4-dichlorophenoxyacetic acid (2,4-D; OR, 1.32; 95% CI, 1.01–1.73), mecoprop (OR, 2.33; 95% CI, 1.58–3.44), and dicamba (OR, 1.68; 95% CI, 1.00–2.81); to the insecticides malathion (OR, 1.83; 95% CI, 1.31–2.55), 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT), carbaryl (OR, 2.11; 95% CI, 1.21–3.69), aldrin, and lindane; and to the fungicides captan and sulfur compounds. In additional multivariate models, which included exposure to other major chemical classes or individual pesticides, personal antecedent cancer, a history of cancer among first-degree relatives, and exposure to mixtures containing dicamba (OR, 1.96; 95% CI, 1.40–2.75) or to mecoprop (OR, 2.22; 95% CI, 1.49–3.29) and to aldrin (OR, 3.42; 95% CI, 1.18–9.95) were significant independent predictors of an increased risk for NHL, whereas a personal history of measles and of allergy desensitization treatments lowered the risk. We concluded that NHL was associated with specific pesticides after adjustment for other independent predictors. FULL TEXT

Band et al., 2011

Band PR, Abanto Z, Bert J, Lang B, Fang R, Gallagher RP, Le ND., “Prostate cancer risk and exposure to pesticides in British Columbia farmers,” Prostate, 2011, 71:2, DOI: 10.1002/pros.21232.


BACKGROUND: Several epidemiologic studies have reported an increased risk of prostate cancer among farmers. Our aim was to assess the risk of developing prostate cancer in relation to exposure to specific active compounds in pesticides.

METHOD: A case-control approach was used with 1,516 prostate cancer patients and 4,994 age-matched internal controls consisting of all other cancer sites excluding lung cancer and cancers of unknown primary site. Lifetime occupational history was obtained through a self-administered questionnaire and used in conjunction with a job exposure matrix to estimate the participants’ lifetime cumulative exposure to approximately 180 active compounds in pesticides. Conditional logistic regression was used to assess prostate cancer risk, adjusting for potential confounding variables and effect modifiers. These include age, ethnicity, alcohol consumption, smoking, education, and proxy respondent.

RESULTS AND CONCLUSIONS: The significant association between prostate cancer risk and exposure to DDT (OR = 1.68; 95% CI: 1.04-2.70 for high exposure), simazine (OR = 1.89; 95% CI: 1.08-3.33 for high exposure), and lindane (OR = 2.02; 95% CI: 1.15-3.55 for high exposure) is in keeping with those previously reported in the literature. We also observed a significant excess risk for several active ingredients that have not been previously reported in the literature such as dichlone, dinoseb amine, malathion, endosulfan, 2,4-D, 2,4-DB, and carbaryl. Some findings in our study were not consistent with those reported in the literature, including captan, dicamba, and diazinon. It is possible that these findings showed a real association and the inconsistencies reflected differences of characteristics between study populations.

Loomis et al., 2015

Dana Loomis, Kathryn Guyton, Yann Grosse, Fatiha El Ghissassi, Véronique Bouvard, Lamia Benbrahim-Tallaa, Neela Guha, Heidi Mattock, Kurt Straif, “Carcinogenicity of lindane, DDT, and 2,4-dichlorophenoxyacetic acid,” The Lancet, 2015, 16, DOI: 10.1016/S1470-2045(15)00081-9.


Summarizes the findings of 26 experts from 13 countries who met at the International Agency for Research on Cancer (IARC; Lyon, France) to assess the carcinogenicity of the insecticides lindane and 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT), and the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) for IARC Monographs Volume 113.  2,4-D was classified as “possibly carcinogenic to humans” (Group 2B) after some studies showed links to cancers including non-Hodgkin’s lymphoma.  FULL TEXT

Mostafalou and Abdollahi, 2017

Sara Mostafalou and Mohammad Abdollahi, “Pesticides: an update of human exposure and toxicity,” Archives of Toxicology, February 2017, 91:2, DOI: 10.1007/s00204-016-1849-x.


Pesticides are a family of compounds which have brought many benefits to mankind in the agricultural, industrial, and health areas, but their toxicities in both humans and animals have always been a concern. Regardless of acute poisonings which are common for some classes of pesticides like organophosphoruses, the association of chronic and sub-lethal exposure to pesticides with a prevalence of some persistent diseases is going to be a phenomenon to which global attention has been attracted. In this review, incidence of various malignant, neurodegenerative, respiratory, reproductive, developmental, and metabolic diseases in relation to different routes of human exposure to pesticides such as occupational, environmental, residential, parental, maternal, and paternal has been systematically criticized in different categories of pesticide toxicities like carcinogenicity, neurotoxicity, pulmonotoxicity, reproductive toxicity, developmental toxicity, and metabolic toxicity. A huge body of evidence exists on the possible role of pesticide exposures in the elevated incidence of human diseases such as cancers, Alzheimer, Parkinson, amyotrophic lateral sclerosis, asthma, bronchitis, infertility, birth defects, attention deficit hyperactivity disorder, autism, diabetes, and obesity. Most of the disorders are induced by insecticides and herbicides most notably organophosphorus, organochlorines, phenoxyacetic acids, and triazine compounds.

Erickson and Bomgardner, 2015

Britt E. Erickson, Melody M. Bomgardner, “Resistant weeds, fears of health effects drive market for alternatives to widely used herbicide,” Chemical and Engineering News, 2015, 93:37.


Not Available


Landrigan and Benbrook, 2015

Phillip Landrigan and Charles Benbrook, “GMOs, Herbicides, and Public Health,” Commentary in New England Journal of Medicine, 2015, 373:8, DOI: 10.1056/NEJMp1505660.


Not Available