skip to Main Content

Bibliography Tag: 2 4 d

Hall et al., 1989

Hall, J. Christopher, Deschamps, Raymond J. A., & Krieg, Kim K.; “Immunoassays for the detection of 2,4-D and picloram in river water and urine;” Journal of Agricultural and Food Chemistry, 1989, 37(4), 981-984; DOI: 10.1021/jf00088a035.


Immunoassays for 2,4-D [ (2,4-dichlorophenoxy)acetic acid] and picloram (4-amino-3,5,6-trichloro-2pyridinecarboxylic acid) detection were developed with polyclonal antibodies raised in New Zealand white rabbits. Concentrations of 2,4-D within the working range 100-10 000 and 50-10 0oO ng/mL could be quantitated with an indirect enzyme-linked immunosorbent assay (ELISA) and a radioimmunoassay (RIA) in river water and urine, respectively. Concentrations of picloram within the working range 50-5000 ng/mL also could be quantitated in river water and urine by RIA. Determinations using the immunoassays required no sample cleanup. Specificities of the antisera for structurally similar herbicides were low compared to 2,4-D or picloram. The RIA methods incorporated a novel radiolabel consisting of [3H]glycine covalently linked to the herbicide molecule. When compared to the ELISA, the RIA was a more simple, efficient, and rapid procedure, requiring fewer steps to complete the assay. The immunoassays would be suitable for herbicide quantitation in applicator exposure and environmental fate studies. FULL TEXT

Reynolds et al., 1994

Reynolds, P. M., Reif, J. S., Ramsdell, H. S., & Tessari, J. D.; “Canine exposure to herbicide-treated lawns and urinary excretion of 2,4-dichlorophenoxyacetic acid;” Cancer Epidemiology, Biomarkers, & Prevention, 1994, 3(3), 233-237.


A recent study by Hayes et al. (J. Natl. Cancer. Inst., 83: 1226-1231, 1991) found an increased risk of malignant lymphoma associated with exposure to 2,4-dichlorophenoxyacetic acid (2,4-D) in pet dogs. We conducted a study to determine the extent to which dogs absorb and excrete 2,4-D in urine after contact with treated lawns under natural conditions. Among 44 dogs potentially exposed to 2,4-D-treated lawns an average of 10.9 days after application, 2,4-D concentrations greater than or equal to 10.0 micrograms/l were found in 33 dogs (75%) and concentrations of > or = 50 micrograms/l were found in 17 (39%). Among 15 dogs with no known exposure to a 2,4-D-treated lawn in the previous 42 days, 4 (27%) had evidence of 2,4-D in urine, 1 at a concentration of > or = 50 micrograms/l. The odds ratio for the association between exposure to a 2,4-D-treated lawn and the detection of > or = 50 micrograms/l 2,4-D in urine was 8.8 (95% confidence interval, 1.4-56.2). Dogs exposed to lawns treated within 7 days before urine collection were more than 50 times as likely to have 2,4-D at concentrations > or = 50 micrograms/l than dogs with exposure to a lawn treated more than 1 week previously (odds ratio = 56.0; 95% confidence interval, 10.0-312.2). The highest mean concentration of 2,4-D in urine (21.3 mg/l) was found in dogs sampled within 2 days after application of the herbicide.(ABSTRACT TRUNCATED AT 250 WORDS) FULL TEXT

Hayes et al., 1991

Hayes, H. M., Tarone, R. E., Cantor, K. P., Jessen, C. R., McCurnin, D. M., & Richardson, R. C.; “Case-control study of canine malignant lymphoma: positive association with dog owner’s use of 2,4-dichlorophenoxyacetic acid herbicides;” Journal of the National Cancer Institute, 1991, 83(17), 1226-1231; DOI: 10.1093/jnci/83.17.1226.


A hospital-based case-control study of companion dogs examined the risk of developing canine malignant lymphoma associated with the use of chemicals in and about the home. Information from a self-administered owner questionnaire and/or a telephone interview of about 491 cases, 466 nontumor controls, and 479 tumor controls indicated that owners in households with dogs that developed malignant lymphoma applied 2,4-dichlorophenoxyacetic acid (2,4-D) herbicides to their lawn and/or employed commercial lawn care companies to treat their yard significantly more frequently than control owners (odds ratio = 1.3). In addition, the risk of canine malignant lymphoma rose to a twofold excess with four or more yearly owner applications of 2,4-D. The findings in this study are consistent with occupational studies in humans, which have reported modest associations between agricultural exposure to 2,4-D and increased risk of non-Hodgkin’s lymphoma, the histology and epidemiology of which are similar to those of canine malignant lymphoma. The present study suggests that human health implications of 2,4-D exposure in the home environment should receive further investigation. FULL TEXT

Thomas et al., 2010

Thomas, K. W., Dosemeci, M., Hoppin, J. A., Sheldon, L. S., Croghan, C. W., Gordon, S. M., Jones, M. L., Reynolds, S. J., Raymer, J. H., Akland, G. G., Lynch, C. F., Knott, C. E., Sandler, D. P., Blair, A. E., & Alavanja, M. C.; “Urinary biomarker, dermal, and air measurement results for 2,4-D and chlorpyrifos farm applicators in the Agricultural Health Study;” Journal of Exposure Science and Environmental Epidemiology, 2010, 20(2), 119-134; DOI: 10.1038/jes.2009.6.


A subset of private pesticide applicators in the Agricultural Health Study (AHS) epidemiological cohort was monitored around the time of their agricultural use of 2,4-dichlorophenoxyacetic acid (2,4-D) and O,O-diethyl-O-3,5,6-trichloro-2-pyridyl phosphorothioate (chlorpyrifos) to assess exposure levels and potential determinants of exposure. Measurements included pre- and post-application urine samples, and patch, hand wipe, and personal air samples. Boom spray or hand spray application methods were used by applicators for 2,4-D products. Chlorpyrifos products were applied using spray applications and in-furrow application of granular products. Geometric mean (GM) values for 69 2,4-D applicators were 7.8 and 25 microg/l in pre- and post-application urine, respectively (P<0.05 for difference); 0.39 mg for estimated hand loading; 2.9 mg for estimated body loading; and 0.37 microg/m(3) for concentration in personal air. Significant correlations were found between all media for 2,4-D. GM values for 17 chlorpyrifos applicators were 11 microg/l in both pre- and post-application urine for the 3,5,6-trichloro-2-pyridinol metabolite, 0.28 mg for body loading, and 0.49 microg/m(3) for air concentration. Only 53% of the chlorpyrifos applicators had measurable hand loading results; their median hand loading being 0.02 mg. Factors associated with differences in 2,4-D measurements included application method and glove use, and, for hand spray applicators, use of adjuvants, equipment repair, duration of use, and contact with treated vegetation. Spray applications of liquid chlorpyrifos products were associated with higher measurements than in-furrow granular product applications. This study provides information on exposures and possible exposure determinants for several application methods commonly used by farmers in the cohort and will provide information to assess and refine exposure classification in the AHS. Results may also be of use in pesticide safety education for reducing exposures to pesticide applicators. FULL TEXT

Gage et al., 2019

Gage, Karla L., Krausz, Ronald F., & Walters, S. Alan; “Emerging Challenges for Weed Management in Herbicide-Resistant Crops;” Agriculture, 2019, 9(8); DOI: 10.3390/agriculture9080180.


Since weed management is such a critical component of agronomic crop production systems, herbicides are widely used to provide weed control to ensure that yields are maximized. In the last few years, herbicide-resistant (HR) crops, particularly those that are glyphosate-resistant, and more recently, those with dicamba (3,6-dichloro-2-methoxybenzoic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) resistance are changing the way many growers manage weeds. However, past reliance on glyphosate and mistakes made in stewardship of the glyphosate-resistant cropping systemhave directly led to the current weed resistance problems that now occur in many agronomic cropping systems, and new technologies must be well-stewarded. New herbicide-resistant trait technologies in soybean, such as dicamba-, 2,4-D-, and isoxaflutole- ((5-cyclopropyl-4-isoxazolyl)[2-(methylsulfonyl)-4-(trifluoromethyl)phenyl]methanone) resistance, are being combined with glyphosate- and glufosinate-resistance traits to manage herbicide-resistant weed populations. In cropping systems with glyphosate-resistant weed species, these new trait options may provide effective weed management tools, although there may be increased risk of off-target movement and susceptible plant damage with the use of some of these technologies. The use of diverse weed management practices to reduce the selection pressure for herbicide-resistant weed evolution is essential to preserve the utility of new traits. The use of herbicides with differing sites of action (SOAs), ideally in combination as mixtures, but also in rotation as part of a weed management program may slow the evolution of resistance in some cases. Increased selection pressure from the effects of some herbicide mixtures may lead to more cases of metabolic herbicide resistance. The most effective long-term approach for weed resistance management is the use of Integrated Weed Management (IWM) which may build the ecological complexity of the cropping system. Given the challenges in management of herbicide-resistant weeds, IWM will likely play a critical role in enhancing future food security for a growing global population. FULL TEXT

Dow AgroSciences, 2016

Dow AgroSciences; “Enlist Duo Herbicide Label;” 2016.

Full Text

Pahwa et al., 2012

Pahwa, M., Harris, S. A., Hohenadel, K., McLaughlin, J. R., Spinelli, J. J., Pahwa, P., Dosman, J. A., & Blair, A., “Pesticide use, immunologic conditions, and risk of non-Hodgkin lymphoma in Canadian men in six provinces,” International Journal of Cancer, 2012, 131(11), 2650-2659. DOI: 10.1002/ijc.27522.


Pesticide exposures and immune suppression have been independently associated with the risk of non-Hodgkin lymphoma (NHL), but their joint effect has not been well explored. Data from a case-control study of men from six Canadian provinces were used to evaluate the potential effect modification of asthma, allergies, or asthma and allergies and hay fever combined on NHL risk from use of: (i) any pesticide; (ii) any organochlorine insecticide; (iii) any organophosphate insecticide; (iv) any phenoxy herbicide; (v) selected individual pesticides [1,1′-(2,2,2-trichloroethylidene)bis[4-chlorobenzene]; 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT), malathion, (4-chloro-2-methylphenoxy)acetic acid (MCPA), mecoprop, and (2,4-dichlorophenoxy)acetic acid (2,4-D); and (vi) from the number of potentially carcinogenic pesticides. Incident NHL cases (n = 513) diagnosed between 1991 and 1994 were recruited from provincial cancer registries and hospitalization records and compared to 1,506 controls. A stratified analysis was conducted to calculate odds ratios (ORs) adjusted for age, province, proxy respondent, and diesel oil exposure. Subjects with asthma, allergies, or hay fever had non-significantly elevated risks of NHL associated with use of MCPA (OR = 2.67, 95% confidence interval [CI]: 0.90-7.93) compared to subjects without any of these conditions (OR = 0.81, 95% CI: 0.39-1.70). Conversely, those with asthma, allergies, or hay fever who reported use of malathion had lower risks of NHL (OR = 1.25, 95% CI: 0.69-2.26) versus subjects with none of these conditions (OR = 2.44, 95% CI: 1.65-3.61). Similar effects were observed for asthma and allergies evaluated individually. Although there were some leads regarding effect modification by these immunologic conditions on the association between pesticide use and NHL, small numbers, measurement error and possible recall bias limit interpretation of these results. FULL TEXT


Shergill et al., 2018

Shergill, Lovreet S., Barlow, Blake R., Bish, Mandy D., & Bradley, Kevin W., “Investigations of 2,4-D and Multiple Herbicide Resistance in a Missouri Waterhemp (Amaranthus tuberculatus) Population,” Weed Science, 2018, 66(3), 386-394. DOI: 10.1017/wsc.2017.82.


Research was conducted from 2015 to 2017 to investigate the potential for 2,4-D and multiple herbicide resistance in a waterhemp [Amaranthus tuberculatus (Moq.) J. D. Sauer] population from Missouri (designated MO-Ren). In the field, visual control of the MO-Ren population with 0.56 to 4.48 kg 2,4-D ha−1 ranged from 26% to 77% in 2015 and from 15% to 55% in 2016. The MO-Ren population was highly resistant to chlorimuron, with visual control never exceeding 7% either year. Estimates of the 2,4-D dose required to provide 50% visual control (I50) of the MO-Ren population were 1.44 kg ha−1 compared with only 0.47 kg 2,4-D ha−1 for the susceptible population. Based on comparisons to a susceptible population in dose–response experiments, the MO-Ren population was approximately 3-fold resistant to 2,4-D, and 7-, 7-, 22-, and 14-fold resistant to atrazine, fomesafen, glyphosate, and mesotrione, respectively. Dicamba and glufosinate were the only two herbicides that provided effective control of the MO-Ren population in these experiments. Examinations of multiple herbicide resistance at the individual plant level revealed that 16% of the plants of the MO-Ren population contained genes stacked for six-way herbicide resistance, and only 1% of plants were classified as resistant to a single herbicide (glyphosate). Results from these experiments confirm that the MO-Ren A. tuberculatus population is resistant to 2,4-D, atrazine, chlorimuron, fomesafen, glyphosate, and mesotrione, making this population the third 2,4-D–resistant A. tuberculatus population identified in the United States, and the first population resistant to six different herbicidal modes of action.

Dellaferrera et al., 2018

Dellaferrera, Ignacio, Cortés, Eduardo, Panigo, Elisa, De Prado, Rafael, Christoffoleti, Pedro, & Perreta, Mariel, “First Report of Amaranthus hybridus with Multiple Resistance to 2,4-D, Dicamba, and Glyphosate,” Agronomy, 2018, 8(8). DOI: 10.3390/agronomy8080140.


In many countries, Amaranthus hybridus is a widespread weed in agricultural systems. The high prolificacy and invasive capacity as well as the resistance of some biotypes to herbicides are among the complications of handling this weed. This paper reports on the first A. hybridus biotypes with resistance to auxinic herbicides and multiple resistance to auxinic herbicides and the EPSPs inhibitor, glyphosate. Several dose response assays were carried out to determine and compare sensitivity of six population of A. hybridus to glyphosate, 2,4-D, and dicamba. In addition, shikimic acid accumulation and piperonil butoxide effects on 2,4-D and dicamba metabolism were tested in the same populations. The results showed four populations were resistant to dicamba and three of these were also resistant to 2,4-D, while only one population was resistant to glyphosate. The glyphosate-resistant population also showed multiple resistance to auxinic herbicides. Pretreatment with piperonil butoxide (PBO) followed by 2,4-D or dicamba resulted in the death of all individual weeds independent of herbicide or population. FULL TEXT

McDuffie et al., 2001

Helen H. McDuffie, Punam Pahwa, John R. McLaughlin, John J. Spinelli, Shirley Fincham, James A. Dosman, Diane Robson, Leo F. Skinnider and Norman W. Choi, “Non-Hodgkin’s Lymphoma and Specific Pesticide Exposures in Men: Cross-Canada Study of Pesticides and Health,” Cancer Epidemiology, Biomarkers, & Prevention, 2001, 10.


Our objective in the study was to investigate the putative associations of specific pesticides with non-Hodgkin’s Lymphoma [NHL; International Classification of Diseases, version 9 (ICD-9) 200, 202]. We conducted a Canadian multicenter population-based incident, case (n = 517)-control (n = 1506) study among men in a diversity of occupations using an initial postal questionnaire followed by a telephone interview for those reporting pesticide exposure of 10 h/year or more, and a 15% random sample of the remainder. Adjusted odds ratios (ORs) were computed using conditional logistic regression stratified by the matching variables of age and province of residence, and subsequently adjusted for statistically significant medical variables (history of measles, mumps, cancer, allergy desensitization treatment, and a positive history of cancer in first-degree relatives). We found that among major chemical classes of herbicides, the risk of NHL was statistically significantly increased by exposure to phenoxyherbicides [OR, 1.38; 95% confidence interval (CI), 1.06–1.81] and to dicamba (OR, 1.88; 95% CI, 1.32–2.68). Exposure to carbamate (OR, 1.92; 95% CI, 1.22–3.04) and to organophosphorus insecticides (OR, 1.73; 95% CI, 1.27–2.36), amide fungicides, and the fumigant carbon tetrachloride (OR, 2.42; 95% CI, 1.19–5.14) statistically significantly increased risk. Among individual compounds, in multivariate analyses, the risk of NHL was statistically significantly increased by exposure to the herbicides 2,4-dichlorophenoxyacetic acid (2,4-D; OR, 1.32; 95% CI, 1.01–1.73), mecoprop (OR, 2.33; 95% CI, 1.58–3.44), and dicamba (OR, 1.68; 95% CI, 1.00–2.81); to the insecticides malathion (OR, 1.83; 95% CI, 1.31–2.55), 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT), carbaryl (OR, 2.11; 95% CI, 1.21–3.69), aldrin, and lindane; and to the fungicides captan and sulfur compounds. In additional multivariate models, which included exposure to other major chemical classes or individual pesticides, personal antecedent cancer, a history of cancer among first-degree relatives, and exposure to mixtures containing dicamba (OR, 1.96; 95% CI, 1.40–2.75) or to mecoprop (OR, 2.22; 95% CI, 1.49–3.29) and to aldrin (OR, 3.42; 95% CI, 1.18–9.95) were significant independent predictors of an increased risk for NHL, whereas a personal history of measles and of allergy desensitization treatments lowered the risk. We concluded that NHL was associated with specific pesticides after adjustment for other independent predictors. FULL TEXT

Back To Top