Bibliography Tag: adjuvants

Dean et al., 1995

Dean, E. Riechers, Loyd, M. Wax, Rex, A. Liebl, & Don, G. Bullock; “Surfactant Effects on Glyphosate Efficacy;” Weed Technology, 1995, 9(2), 281-285.


Field and greenhouse studies were performed to examine the influence of various surfactants with glyphosate on whole plant efficacy. Relationships were examined between glyphosate phytotoxicity and surfactant properties, including ionic form, degree of ethoxylation, and hydrophobe composition. Cationic tertiary amine surfactants enhanced glyphosate performance in both field and greenhouse studies. Nonionic allinol and octoxynol surfactants were not effective in combination with glyphosate. In field studies, glyphosate efficacy increased with increasing surfactant ethylene oxide (EO) content. Soybean and velvetleaf responded similarly to glyphosate-surfactant spray applications, as both demonstrated significant linear and quadratic relationships between increasing surfactant ethoxylation and phytotoxicity, while common lambsquarters showed a significant linear relationship only. Cationic surfactants were evaluated in the greenhouse and a significant quadratic regression of glyphosate phytotoxicity to common lambsquarters on increasing surfactant ethoxylation indicated an optimum surfactant EO content of about 10 moles. Both tertiary and quaternary ethoxylated fatty amines were effective with glyphosate in decreasing common lambsquarters’ fresh weight. Fatty amine hydrophobe composition did not correlate with glyphosate phytotoxicity to common lambsquarters. FULL TEXT

Meftaul et al.; 2020

Meftaul, I. M., Venkateswarlu, K., Dharmarajan, R., Annamalai, P., Asaduzzaman, M., Parven, A., & Megharaj, M.; “Controversies over human health and ecological impacts of glyphosate: Is it to be banned in modern agriculture?;” Environmental Pollution, 2020, 263(Pt A), 114372; DOI: 10.1016/j.envpol.2020.114372.


Glyphosate, introduced by Monsanto Company under the commercial name Roundup in 1974, became the extensively used herbicide worldwide in the last few decades. Glyphosate has excellent properties of fast sorption in soil, biodegradation and less toxicity to nontarget organisms. However, glyphosate has been reported to increase the risk of cancer, endocrine-disruption, celiac disease, autism, effect on erythrocytes, leaky-gut syndrome, etc. The reclassification of glyphosate in 2015 as ‘probably carcinogenic’ under Group 2A by the International Agency for Research on Cancer has been broadly circulated by anti-chemical and environmental advocacy groups claiming for restricted use or ban of glyphosate. In contrast, some comprehensive epidemiological studies involving farmers with long-time exposure to glyphosate in USA and elsewhere coupled with available toxicological data showed no correlation with any kind of carcinogenic or genotoxic threat to humans. Moreover, several investigations confirmed that the surfactant, polyethoxylated tallow amine (POEA), contained in the formulations of glyphosate like Roundup, is responsible for the established adverse impacts on human and ecological health. Subsequent to the evolution of genetically modified glyphosate-resistant crops and the extensive use of glyphosate over the last 45 years, about 38 weed species developed resistance to this herbicide. Consequently, its use in the recent years has been either restricted or banned in 20 countries. This critical review on glyphosate provides an overview of its behaviour, fate, detrimental impacts on ecological and human health, and the development of resistance in weeds and pathogens. Thus, the ultimate objective is to help the authorities and agencies concerned in resolving the existing controversies and in providing the necessary regulations for safer use of the herbicide. In our opinion, glyphosate can be judiciously used in agriculture with the inclusion of safer surfactants in commercial formulations sine POEA, which is toxic by itself is likely to increase the toxicity of glyphosate. FULL TEXT

Williams et al., 2000

Williams, G. M., Kroes, R., & Munro, I. C.; “Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans;” Regulatory Toxicology and Pharmacology, 2000, 31(2 Pt 1), 117-165; DOI: 10.1006/rtph.1999.1371.


Reviews on the safety of glyphosate and Roundup herbicide that have been conducted by several regulatory agencies and scientific institutions worldwide have concluded that there is no indication of any human health concern. Nevertheless, questions regarding their safety are periodically raised. This review was undertaken to produce a current and comprehensive safety evaluation and risk assessment for humans. It includes assessments of glyphosate, its major breakdown product [aminomethylphosphonic acid (AMPA)], its Roundup formulations, and the predominant surfactant [polyethoxylated tallow amine (POEA)] used in Roundup formulations worldwide. The studies evaluated in this review included those performed for regulatory purposes as well as published research reports. The oral absorption of glyphosate and AMPA is low, and both materials are eliminated essentially unmetabolized. Dermal penetration studies with Roundup showed very low absorption. Experimental evidence has shown that neither glyphosate nor AMPA bioaccumulates in any animal tissue. No significant toxicity occurred in acute, subchronic, and chronic studies. Direct ocular exposure to the concentrated Roundup formulation can result in transient irritation, while normal spray dilutions cause, at most, only minimal effects. The genotoxicity data for glyphosate and Roundup were assessed using a weight-of-evidence approach and standard evaluation criteria. There was no convincing evidence for direct DNA damage in vitro or in vivo, and it was concluded that Roundup and its components do not pose a risk for the production of heritable/somatic mutations in humans. Multiple lifetime feeding studies have failed to demonstrate any tumorigenic potential for glyphosate. Accordingly, it was concluded that glyphosate is noncarcinogenic. Glyphosate, AMPA, and POEA were not teratogenic or developmentally toxic. There were no effects on fertility or reproductive parameters in two multigeneration reproduction studies with glyphosate. Likewise there were no adverse effects in reproductive tissues from animals treated with glyphosate, AMPA, or POEA in chronic and/or subchronic studies. Results from standard studies with these materials also failed to show any effects indicative of endocrine modulation. Therefore, it is concluded that the use of Roundup herbicide does not result in adverse effects on development, reproduction, or endocrine systems in humans and other mammals. For purposes of risk assessment, no-observed-adverse-effect levels (NOAELs) were identified for all subchronic, chronic, developmental, and reproduction studies with glyphosate, AMPA, and POEA. Margins-of-exposure for chronic risk were calculated for each compound by dividing the lowest applicable NOAEL by worst-case estimates of chronic exposure. Acute risks were assessed by comparison of oral LD50 values to estimated maximum acute human exposure. It was concluded that, under present and expected conditions of use, Roundup herbicide does not pose a health risk to humans.

Janssens and Stoks, 2017

Janssens, L., & Stoks, R.; “Stronger effects of Roundup than its active ingredient glyphosate in damselfly larvae;” Aquatic Toxicology, 2017, 193, 210-216; DOI: 10.1016/j.aquatox.2017.10.028.


Pesticides are causing strong decreases in aquatic biodiversity at concentrations assumed safe by legislation. One reason for the failing risk assessment may be strong differences in the toxicity of the active ingredient of pesticides and their commercial formulations. Sublethal effects, especially those on behaviour, have been largely ignored in this context, yet can be equally important as lethal effects at the population and ecosystem levels. Here, we compared the toxicity of the herbicide Roundup and its active ingredient glyphosate on survival, but also on ecologically relevant sublethal traits (life history, behaviour and physiology) in damselfly larvae. Roundup was more toxic than glyphosate with negative effects on survival, behaviour and most of the physiological traits being present at lower concentrations (food intake, escape swimming speed) or even only present (survival, sugar and total energy content and muscle mass) following Roundup exposure. This confirms the toxicity of the surfactant POEA. Notably, also glyphosate was not harmless: a realistic concentration of 2mg/l resulted in reduced growth rate, escape swimming speed and fat content. Our results therefore indicate that the toxicity of Roundup cannot be fully attributed to its surfactant, thereby suggesting that also the new generation of glyphosate-based herbicides with other mixtures of surfactants likely will have adverse effects on non-target aquatic organisms. Ecotoxicological studies comparing the toxicity of active ingredients and their commercial formulations typically ignore behaviour while the here observed differential effects on behaviour likely will negatively impact damselfly populations. Our data highlight that risk assessment of pesticides ignoring sublethal effects may contribute to the negative effects of pesticides on aquatic biodiversity. FULL TEXT

Pochron et al., 2019

Pochron, S., Simon, L., Mirza, A., Littleton, A., Sahebzada, F., & Yudell, M.; “Glyphosate but not Roundup(R) harms earthworms (Eisenia fetida);” Chemosphere, 2019, 241, 125017; DOI: 10.1016/j.chemosphere.2019.125017.


Glyphosate is the active ingredient in Roundup(R) formulations. While multiple studies have documented the toxicity, environmental persistence, and tendency to spread for glyphosate and Roundup(R), few studies have compared the toxicity of glyphosate-based formulations to the toxicity of pure glyphosate for soil invertebrates, which contact both the herbicide and the formulations. Hundreds of formulations exist; their inert ingredients are confidential; and glyphosate persists in our food, water, and soil. In this experiment, we held glyphosate type and concentration constant, varying only formulation. Using Roundup Ready-to-Use III(R), Roundup Super Concentrate(R), and pure glyphosate, we delivered 26.3mg glyphosate in the form of isopropylamine salt per kg of soil to compost worms (Eisenia fetida). We found that worms living in soil spiked with pure glyphosate lost 14.8-25.9% of their biomass and survived a stress test for 22.2-33.3% less time than worms living in uncontaminated soil. Worms living in soil spiked with Roundup Ready-to-Use III(R) and Roundup Super Concentrate(R) did not lose body mass and survived the stress test as well as worms living in uncontaminated soil. No contaminant affected soil microbial or fungal biomass over the 40-day period of this experiment. We suggest that the nitrates and phosphates in the formulations offset the toxic effects of glyphosate by spurring microbial growth and speeding glyphosate degradation. We also found a 26.5-41.3% reduction in fungal biomass across all treatments over the course of this experiment, suggesting that the worms consumed fungi and spores. FULL TEXT

Mesnage et al., 2019

Mesnage, R., Benbrook, C., & Antoniou, M. N.; “Insight into the confusion over surfactant co-formulants in glyphosate-based herbicides;” Food and Chemical Toxicology, 2019, 128, 137-145; DOI: 10.1016/j.fct.2019.03.053.


Glyphosate is the active ingredient in glyphosate-based herbicides (GBHs). Other chemicals in GBHs are presumed as inert by regulatory authorities and are largely ignored in pesticide safety evaluations. We identified the surfactants in a cross-section of GBH formulations and compared their acute toxic effects. The first generation of polyethoxylated amine (POEA) surfactants (POE-tallowamine) in Roundup are markedly more toxic than glyphosate and heightened concerns of risks to human health, especially among heavily-exposed applicators. Beginning in the mid-1990s, first-generation POEAs were progressively replaced by other POEA surfactants, ethoxylated etheramines, which exhibited lower non-target toxic effects. Lingering concern over surfactant toxicity was mitigated at least in part within the European Union by the introduction of propoxylated quaternary ammonium surfactants. This class of POEA surfactants are approximately 100 times less toxic to aquatic ecosystems and human cells than previous GBH-POEA surfactants. As GBH composition is legally classified as confidential commercial information, confusion concerning the identity and concentrations of co-formulants is common and descriptions of test substances in published studies are often erroneous or incomplete. In order to resolve this confusion, laws requiring disclosure of the chemical composition of pesticide products could be enacted. Research to understand health implications from ingesting these substances is required. FULL TEXT

Owagboriaye et al., 2019

Owagboriaye, F., Dedeke, G., Ademolu, K., Olujimi, O., Aladesida, A., & Adeleke, M., “Comparative studies on endogenic stress hormones, antioxidant, biochemical and hematological status of metabolic disturbance in albino rat exposed to roundup herbicide and its active ingredient glyphosate,” Environmental Science and Pollution Research International, 2019. DOI: 10.1007/s11356-019-04759-1.


There have been growing concerns and uncertainty about reports attributing the metabolic disturbance induced by a commercial formulation of glyphosate-based herbicide to its active ingredient. We therefore compared the effects of Roundup Original(R) and its active ingredient glyphosate on some hypothalamic-pituitary-adrenal (HPA) hormones and oxidative stress markers, biochemical and hematological profiles in 56 adult male albino rats randomly assigned to seven treatments of eight rats per treatment. The rats were orally exposed to Roundup Original(R) and its active ingredient daily at 3.6 mg/kg body weight (bw), 50.4 and 248.4 mg/kgbw of glyphosate equivalent concentrations for 12 weeks, while control treatment received distilled water. Serum concentrations of corticosterone, adrenocorticotropic hormone, aldosterone and concentration of oxidative stress marker, biochemical and hematological profiles in the blood were determined. Concentrations of corticosterone and aldosterone were significantly higher (p < 0.05) in rats treated with Roundup in a dose-dependent manner. Reduced glutathione concentration, catalase, and butyrylcholinesterase activities reduced significantly in rats treated with Roundup relative to those treated with the active ingredient. Lipid peroxidation was observed in rats treated with Roundup. Biochemical and hematological profiles of rats treated with Roundup were significantly altered (p < 0.05). However, significant changes in only acid phosphatase, lactase dehydrogenase, bilirubin, and white blood cells in rats treated with the active ingredient at 50.4 mg/kg were observed. The severe metabolic disturbance and stress observed in rats treated with the commercial formulation of Roundup herbicide may not be associated with the mild changes induced by the active ingredient.

Wozniak et al., 2018

Wozniak, E., Sicinska, P., Michalowicz, J., Wozniak, K., Reszka, E., Huras, B., Zakrzewski, J., & Bukowska, B., “The mechanism of DNA damage induced by Roundup 360 PLUS, glyphosate and AMPA in human peripheral blood mononuclear cells – genotoxic risk assessement,” Food and Chemical Toxicology, 2018, 120, 510-522. DOI: 10.1016/j.fct.2018.07.035.


Glyphosate is the most heavily applied among pesticides in the world, and thus human exposure to this substance continues to increase. WHO changed classification of glyphosate to probably cancerogenic to humans, thus there is urgent need to assess in detail genotoxic mechanism of its action. We have assessed the effect of glyphosate, its formulation (Roundup 360 PLUS) and its main metabolite (aminomethylphosphonic acid, AMPA) in the concentration range from 1 to 1000muM on DNA damage in human peripheral blood mononuclear cells (PBMCs). The cells were incubated for 24h. The compounds studied and formulation induced DNA single and double strand-breaks and caused purines and pyrimidines oxidation. None of compounds examined was capable of creating adducts with DNA, while those substances increased ROS (including (*)OH) level in PBMCs. Roundup 360 PLUS caused damage to DNA even at 5muM, while glyphosate and particularly AMPA induced DNA lesions from the concentration of 250muM and 500muM, respectively. DNA damage induced by glyphosate and its derivatives increased in order: AMPA, glyphosate, Roundup 360 PLUS. We may conclude that observed changes were not associated with direct interaction of xenobiotics studied with DNA, but the most probably they occurred through ROS-mediated effects. FULL TEXT

Szepanowski et al., 2018

Szepanowski, F., Szepanowski, L. P., Mausberg, A. K., Albrecht, P., Kleinschnitz, C., Kieseier, B. C., & Stettner, M., “Differential impact of pure glyphosate and glyphosate-based herbicide in a model of peripheral nervous system myelination,” Acta Neuropatholologica, 2018, 136(6), 979-982. DOI: 10.1007/s00401-018-1938-4.


Not available.  FULL TEXT

Rice et al., 2018

Rice, J.R., Dunlap, P., Ramaiahgari, S., Ferguson, S., Smith-Roe, S.L., & DeVito, M., “Poster: Effects of Glyphosate and its Formulations on Markers of Oxidative Stress and Cell Viability in HepaRG and HaCaT Cell Lines, 2018, Presented at the Society of Toxicology Conference.


Glyphosate (GLY) is the active ingredient found in herbicide formulations worldwide. GLY is toxic to plants by disrupting the shikimate amino acid synthesis pathway. The present day intensive use of GLY began with the introduction of GLY-resistant crops in the late 1990s. Although GLY has a low toxicity profile for humans and mammals, conflicting reports exist as to whether it poses a cancer risk for humans. The USEPA and European regulatory agencies have described GLY as unlikely to pose a carcinogenic hazard to humans. However, the International Agency for Research on Cancer (IARC) has classified GLY as “probably carcinogenic to humans”.

IARC proposed that oxidative stress may be a mechanism by which GLY could potentially cause cancer. To address this hypothesis, we are testing GLY in human cell lines using several assays that detect reactive oxygen species (ROS) or their effects. Studies were designed to compare the point of departure for the effects of GLY on cell viability (CellTiter-Glo assay) to the point of departure for effects in oxidative damage assays. We also directly compared the effects of GLY versus GLY salts, as well as GLY and adjunct active ingredients versus formulations. We used a high content, 384-well plate approach to generate extensive dose-response curves for multiple comparisons.

Assays (CellTiter-Glo, ROS-Glo, and JC10) were performed after 1 or 24 h of exposure to test articles. GLY and GLY isopropylamine decreased cell viability and altered mitochondrial membrane potential (MMP) at ≥ 10 mM, but did not affect ROS production. The formulations were more potent than GLY alone. Cell viability and MMP were significantly altered at 1 h by the formulations. Based on GLY concentrations, these mixtures were over 1000x more potent than GLY alone. In contrast to the robust induction of ROS by positive controls at both time points, formulations had no effect on ROS at 1 h and showed a marginal increase in ROS at 24 h. These data suggest that GLY does not induce oxidative stress. In addition, the formulations marginally increased oxidative stress only after significant loss of cell viability. The results were very similar for both HepaRG and HaCaT cell lines, suggesting that xenobiotic metabolism has little impact on cell viability and oxidative stress induced by these chemicals. FULL TEXT