skip to Main Content

Bibliography Tag: birth defects

Carmichael et al., 2016

Carmichael SL, Yang W, Roberts E, Kegley SE, Brown TJ, English PB, Lammer EJ, Shaw GM, “Residential agricultural pesticide exposures and risks of selected birth defects among offspring in the San Joaquin Valley of California,” Birth Defects Research Part A: Clinical and Molecular Teratology, 2016, 106:1, doi: 10.1002/bdra.23459.


BACKGROUND: We examined associations of birth defects with residential proximity to commercial agricultural pesticide applications in California. Subjects included 367 cases representing five types of birth defects and 785 nonmalformed controls born 1997 to 2006.

METHODS:Associations with any versus no exposure to physicochemical groups of pesticides and specific chemicals were assessed using logistic regression adjusted for covariates. Overall, 46% of cases and 38% of controls were classified as exposed to pesticides within a 500 m radius of mother’s address during a 3-month periconceptional window.

RESULTS:We estimated odds ratios (ORs) for 85 groups and 95 chemicals with five or more exposed cases and control mothers. Ninety-five percent confidence intervals (CI) excluded 1.0 for 11 ORs for groups and 22 ORs for chemicals, ranging from 1.9 to 3.1 for groups and 1.8 to 4.9 for chemicals except for two that were <1 (noted below).

CONCLUSION:For groups, these ORs were for anotia/microtia (n = 95 cases) and dichlorophenoxy acids/esters and neonicotinoids; anorectal atresia/stenosis (n = 77) and alcohol/ethers and organophosphates (these ORs were < 1.0); transverse limb deficiencies (n = 59) and dichlorophenoxy acids/esters, petroleum derivatives, and triazines; and craniosynostosis (n = 79) and alcohol/ethers, avermectins, neonicotinoids, and organophosphates. For chemicals, ORs were: anotia/microtia and five pesticides from the groups dichlorophenoxy acids/esters, copper-containing compounds, neonicotinoids, organophosphates, and triazines; transverse limb deficiency and six pesticides – oxyfluorfen and pesticides from the groups copper-containing compounds, 2,6-dinitroanilines, neonicotinoids, petroleum derivatives and polyalkyloxy compounds; craniosynostosis and 10 pesticides – oxyfluorfen and pesticides from the groups alcohol/ethers, avermectins, n-methyl-carbamates, neonicotinoids, ogranophosphates (two chemicals), polyalkyloxy compounds (two chemicals), and pyrethroids; and congenital diaphragmatic hernia (n = 62) and a copper-containing compound.  FULL TEXT

Benachour and Seralini, 2009.

Benachour N, Séralini GE, “Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cell,” Chemical Research in Toxicology, 2009, 22(1):97-105, doi: 10.1021/ tx800218n.

ABSTRACT: We have evaluated the toxicity of four glyphosate (G)-based herbicides in Roundup formulations, from 10(5) times dilutions, on three different human cell types. This dilution level is far below agricultural recommendations and corresponds to low levels of residues in food or feed. The formulations have been compared to G alone and with its main metabolite AMPA or with one known adjuvant of R formulations, POEA. HUVEC primary neonate umbilical cord vein cells have been tested with 293 embryonic kidney and JEG3 placental cell lines. All R formulations cause total cell death within 24 h, through an inhibition of the mitochondrial succinate dehydrogenase activity, and necrosis, by release of cytosolic adenylate kinase measuring membrane damage. They also induce apoptosis via activation of enzymatic caspases 3/7 activity. This is confirmed by characteristic DNA fragmentation, nuclear shrinkage (pyknosis), and nuclear fragmentation (karyorrhexis), which is demonstrated by DAPI in apoptotic round cells. G provokes only apoptosis, and HUVEC are 100 times more sensitive overall at this level. The deleterious effects are not proportional to G concentrations but rather depend on the nature of the adjuvants. AMPA and POEA separately and synergistically damage cell membranes like R but at different concentrations. Their mixtures are generally even more harmful with G. In conclusion, the R adjuvants like POEA change human cell permeability and amplify toxicity induced already by G, through apoptosis and necrosis. The real threshold of G toxicity must take into account the presence of adjuvants but also G metabolism and time-amplified effects or bioaccumulation. This should be discussed when analyzing the in vivo toxic actions of R. This work clearly confirms that the adjuvants in Roundup formulations are not inert. Moreover, the proprietary mixtures available on the market could cause cell damage and even death around residual levels to be expected, especially in food and feed derived from R formulation-treated crops.

Agopian et al, 2013b

Agopian AJ, Lupo PJ, Canfield MA, Langlois PH, “Case-control study of maternal residential atrazine exposure and male genital malformations,” American Journal of Medical Genetics Part A, 2013, 161A:5, doi: 10.1002/ajmg.a.35815.

ABSTRACT: Exposure to endocrine disrupting chemicals has been associated with risk for male genital malformations. However, residential prenatal exposure to atrazine, an endocrine disrupting pesticide, has not been evaluated. We obtained data from the Texas Birth Defects Registry for 16,433 cases with isolated male genital malformations and randomly selected, population-based controls delivered during 1999-2008. County-level estimates of atrazine exposure from the United States Geological Survey were linked to all subjects. We evaluated the relationship between estimated maternal residential atrazine exposure and risk for male genital malformations in offspring. Separate unconditional logistic regression analyses were conducted for hypospadias, cryptorchidism, and small penis. We observed modest, but consistent, associations between medium-low and/or medium levels of estimated periconceptional maternal residential atrazine exposure and every male genital malformation category evaluated (e.g., adjusted odds ratio for medium compared to low atrazine levels and all male genital malformations: 1.2, 95% confidence interval: 1.1-1.3). Previous literature from animal and epidemiological studies supports our findings. Our results provide further evidence of a suspected teratogenic role of atrazine. FULL TEXT

Back To Top