skip to Main Content

Bibliography Tag: chlorpyrifos

Arnold et al., 2015

Arnold, S. M., Morriss, A., Velovitch, J., Juberg, D., Burns, C. J., Bartels, M., Aggarwal, M., Poet, T., Hays, S., & Price, P.; “Derivation of human Biomonitoring Guidance Values for chlorpyrifos using a physiologically based pharmacokinetic and pharmacodynamic model of cholinesterase inhibition;” Regulatory Toxicology and Pharmacology, 2015, 71(2), 235-243; DOI: 10.1016/j.yrtph.2014.12.013.

ABSTRACT:

A number of biomonitoring surveys have been performed for chlorpyrifos (CPF) and its metabolite (3,5,6-trichloro-2-pyridinol, TCPy); however, there is no available guidance on how to interpret these data in a health risk assessment context. To address this gap, Biomonitoring Guidance Values (BGVs) are developed using a physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model. The PBPK/PD model is used to predict the impact of age and human variability on the relationship between an early marker of cholinesterase (ChE) inhibition in the peripheral and central nervous systems [10% red blood cell (RBC) ChE inhibition] and levels of systemic biomarkers. Since the PBPK/PD model characterizes variation of sensitivity to CPF in humans, interspecies and intraspecies uncertainty factors are not needed. Derived BGVs represent the concentration of blood CPF and urinary TCPy associated with 95% of the population having less than or equal to 10% RBC ChE inhibition. Blood BGV values for CPF in adults and infants are 6100 ng/L and 4200 ng/L, respectively. Urinary TCPy BGVs for adults and infants are 2100 mug/L and 520 mug/L, respectively. The reported biomonitoring data are more than 150-fold lower than the BGVs suggesting that current US population exposures to CPF are well below levels associated with any adverse health effect. FULL TEXT

Daisley et al., 2018

Daisley, B. A., Trinder, M., McDowell, T. W., Collins, S. L., Sumarah, M. W., & Reid, G.; “Microbiota-Mediated Modulation of Organophosphate Insecticide Toxicity by Species-Dependent Interactions with Lactobacilli in a Drosophila melanogaster Insect Model;” Applied and Environmental Microbiology, 2018, 84(9); DOI: 10.1128/AEM.02820-17.

ABSTRACT:

Despite the benefits to the global food supply and agricultural economies, pesticides are believed to pose a threat to the health of both humans and wildlife. Chlorpyrifos (CP), a commonly used organophosphate insecticide, has poor target specificity and causes acute neurotoxicity in a wide range of species via the suppression of acetylcholinesterase. This effect is exacerbated 10- to 100-fold by chlorpyrifos oxon (CPO), a principal metabolite of CP. Since many animal-associated symbiont microorganisms are known to hydrolyze CP into CPO, we used a Drosophila melanogaster insect model to investigate the hypothesis that indigenous and probiotic bacteria could affect CP metabolism and toxicity. Antibiotic-treated and germfree D. melanogaster insects lived significantly longer than their conventionally reared counterparts when exposed to 10 muM CP. Drosophila melanogaster gut-derived Lactobacillus plantarum, but not Acetobacterindonesiensis, was shown to metabolize CP. Liquid chromatography tandem-mass spectrometry confirmed that the L. plantarum isolate preferentially metabolized CP into CPO when grown in CP-spiked culture medium. Further experiments showed that monoassociating germfree D. melanogaster with the L. plantarum isolate could reestablish a conventional-like sensitivity to CP. Interestingly, supplementation with the human probiotic Lactobacillus rhamnosus GG (a strain that binds but does not metabolize CP) significantly increased the survival of the CP-exposed germfree D. melanogaster This suggests strain-specific differences in CP metabolism may exist among lactobacilli and emphasizes the need for further investigation. In summary, these results suggest that (i) CPO formation by the gut microbiota can have biologically relevant consequences for the host, and (ii) probiotic lactobacilli may be beneficial in reducing in vivo CP toxicity.IMPORTANCE An understudied area of research is how the microbiota (microorganisms living in/on an animal) affects the metabolism and toxic outcomes of environmental pollutants such as pesticides. This study focused specifically on how the microbial biotransformation of chlorpyrifos (CP; a common organophosphate insecticide) affected host exposure and toxicity parameters in a Drosophila melanogaster insect model. Our results demonstrate that the biotransformation of CP by the gut microbiota had biologically relevant and toxic consequences on host health and that certain probiotic lactobacilli may be beneficial in reducing CP toxicity. Since inadvertent pesticide exposure is suspected to negatively impact the health of off-target species, these findings may provide useful information for wildlife conservation and environmental sustainability planning. Furthermore, the results highlight the need to consider microbiota composition differences between beneficial and pest insects in future insecticide designs. More broadly, this study supports the use of beneficial microorganisms to modulate the microbiota-mediated biotransformation of xenobiotics. FULL TEXT

Xia et al., 2018

Xia, X., Sun, B., Gurr, G. M., Vasseur, L., Xue, M., & You, M.; “Gut Microbiota Mediate Insecticide Resistance in the Diamondback Moth, Plutella xylostella (L.);” Frontiers in Microbiology, 2018, 9, 25; DOI: 10.3389/fmicb.2018.00025.

ABSTRACT:

The development of insecticide resistance in insect pests is a worldwide concern and elucidating the underlying mechanisms is critical for effective crop protection. Recent studies have indicated potential links between insect gut microbiota and insecticide resistance and these may apply to the diamondback moth, Plutella xylostella (L.), a globally and economically important pest of cruciferous crops. We isolated Enterococcus sp. (Firmicutes), Enterobacter sp. (Proteobacteria), and Serratia sp. (Proteobacteria) from the guts of P. xylostella and analyzed the effects on, and underlying mechanisms of insecticide resistance. Enterococcus sp. enhanced resistance to the widely used insecticide, chlorpyrifos, in P. xylostella, while in contrast, Serratia sp. decreased resistance and Enterobacter sp. and all strains of heat-killed bacteria had no effect. Importantly, the direct degradation of chlorpyrifos in vitro was consistent among the three strains of bacteria. We found that Enterococcus sp., vitamin C, and acetylsalicylic acid enhanced insecticide resistance in P. xylostella and had similar effects on expression of P. xylostella antimicrobial peptides. Expression of cecropin was down-regulated by the two compounds, while gloverin was up-regulated. Bacteria that were not associated with insecticide resistance induced contrasting gene expression profiles to Enterococcus sp. and the compounds. Our studies confirmed that gut bacteria play an important role in P. xylostella insecticide resistance, but the main mechanism is not direct detoxification of insecticides by gut bacteria. We also suggest that the influence of gut bacteria on insecticide resistance may depend on effects on the immune system. Our work advances understanding of the evolution of insecticide resistance in this key pest and highlights directions for research into insecticide resistance in other insect pest species. FULL TEXT

von Ehrenstein et al., 2019

von Ehrenstein, O. S., Ling, C., Cui, X., Cockburn, M., Park, A. S., Yu, F., Wu, J., & Ritz, B., “Prenatal and infant exposure to ambient pesticides and autism spectrum disorder in children: population based case-control study,” BMJ, 2019, 364, l962. DOI: 10.1136/bmj.l962.

ABSTRACT:

OBJECTIVE: To examine associations between early developmental exposure to ambient pesticides and autism spectrum disorder.

DESIGN: Population based case-control study.

SETTING: California’s main agricultural region, Central Valley, using 1998-2010 birth data from the Office of Vital Statistics.

POPULATION: 2961 individuals with a diagnosis of autism spectrum disorder based on the Diagnostic and Statistical Manual of Mental Disorders, fourth edition, revised (up to 31 December 2013), including 445 with intellectual disability comorbidity, were identified through records maintained at the California Department of Developmental Services and linked to their birth records. Controls derived from birth records were matched to cases 10:1 by sex and birth year.

EXPOSURE: Data from California state mandated Pesticide Use Reporting were integrated into a geographic information system tool to estimate prenatal and infant exposures to pesticides (measured as pounds of pesticides applied per acre/month within 2000 m from the maternal residence). 11 high use pesticides were selected for examination a priori according to previous evidence of neurodevelopmental toxicity in vivo or in vitro (exposure defined as ever v never for each pesticide during specific developmental periods).

MAIN OUTCOME MEASURE: Odds ratios and 95% confidence intervals using multivariable logistic regression were used to assess associations between pesticide exposure and autism spectrum disorder (with or without intellectual disabilities) in offspring, adjusting for confounders.

RESULTS: Risk of autism spectrum disorder was associated with prenatal exposure to glyphosate (odds ratio 1.16, 95% confidence interval 1.06 to 1.27), chlorpyrifos (1.13, 1.05 to 1.23), diazinon (1.11, 1.01 to 1.21), malathion (1.11, 1.01 to 1.22), avermectin (1.12, 1.04 to 1.22), and permethrin (1.10, 1.01 to 1.20). For autism spectrum disorder with intellectual disability, estimated odds ratios were higher (by about 30%) for prenatal exposure to glyphosate (1.33, 1.05 to 1.69), chlorpyrifos (1.27, 1.04 to 1.56), diazinon (1.41, 1.15 to 1.73), permethrin (1.46, 1.20 to 1.78), methyl bromide (1.33, 1.07 to 1.64), and myclobutanil (1.32, 1.09 to 1.60); exposure in the first year of life increased the odds for the disorder with comorbid intellectual disability by up to 50% for some pesticide substances.

CONCLUSION: Findings suggest that an offspring’s risk of autism spectrum disorder increases following prenatal exposure to ambient pesticides within 2000 m of their mother’s residence during pregnancy, compared with offspring of women from the same agricultural region without such exposure. Infant exposure could further increase risks for autism spectrum disorder with comorbid intellectual disability. FULL TEXT

Hertz-Picciotto et al., 2018

Hertz-Picciotto, Irva, Sass, Jennifer B., Engel, Stephanie, Bennett, Deborah H., Bradman, Asa, Eskenazi, Brenda, Lanphear, Bruce, & Whyatt, Robin, “Organophosphate exposures during pregnancy and child neurodevelopment: Recommendations for essential policy reforms,” PLOS Medicine, 2018, 15(10). DOI: 10.1371/journal.pmed.1002671.

SUMMARY POINTS:

• Widespread use of organophosphate (OP) pesticides to control insects has resulted in ubiquitous human exposures.
• High exposures to OP pesticides are responsible for poisonings and deaths, particularly in developing countries.
• Compelling evidence indicates that prenatal exposure at low levels is putting children at risk for cognitive and behavioral deficits and for neurodevelopmental disorders.
To protect children worldwide, we recommend the following:
• Governments phase out chlorpyrifos and other OP pesticides, monitor watersheds and other sources of human exposures, promote use of integrated pest management (IPM) through incentives and training in agroecology, and implement mandatory surveillance of pesticide-related illness.
• Health professions implement curricula on the hazards from OP pesticides in nursing and medical schools and in continuing medical education courses and educate their patients and the public about these hazards.
• Agricultural entities accelerate the development of nontoxic approaches to pest control through IPM and ensure the safety of workers through training and provision of protective equipment when toxic chemicals are to be used. FULL TEXT

Ferre et al., 2018

Ferre, D. M., Quero, A. A. M., Hernandez, A. F., Hynes, V., Tornello, M. J., Luders, C., & Gorla, N. B. M., “Potential risks of dietary exposure to chlorpyrifos and cypermethrin from their use in fruit/vegetable crops and beef cattle productions,” Environmental Monitoring and Assessment, 2018, 190(5), 292. DOI 10.1007/s10661-018-6647-x.

ABSTRACT:

The active ingredients (a.i.) used as pesticides vary across regions. Diet represents the main source of chronic exposure to these chemicals. The aim of this study was to look at the pesticides applied in fruit, vegetable, and beef cattle productions in Mendoza (Argentina), to identify those that were simultaneously used by the three production systems. Local individuals (n = 160), involved in these productions, were interviewed. Glyphosate was the a.i. most often used by fruit-vegetable producers, and ivermectin by beef cattle producers. Chlorpyrifos (CPF) and cypermethrin (CYP) were the only a.i. used by the three production systems. The survey revealed that CPF, CYP, alpha CYP, and CPF+CYP were used by 22, 16, 4, and 20% of the fruit and vegetable producers, respectively. Regarding beef cattle, CYP was used by 90% of producers, CYP + CPF formulation by 8%, and alpha CYP by 2%. The second approach of this study was to search the occurrence of CYP and CPF residues in food commodities analyzed under the National Plan for Residue Control (2012-2015). CYP residues found above the LOD were reported in 4.0% and CPF in 13.4% of the vegetable samples tested, as well as in 1.2 and 28.8%, respectively, of the fruit samples tested. Regarding beef cattle, CYP residues were reported in 2.3% and organophosphates (as a general pesticide class) in 13.5% of samples tested. In conclusion, consumers may be exposed simultaneously to CPF and CYP, from fruits, vegetables, and beef intake. Accordingly, the policy for pesticide residues in food and human risk assessment should account for the combined exposure to CPF and CYP. Moreover, appropriate toxicological studies of this mixture (including genotoxicity) are warranted.

Landrigan, 2018

Philip J. Landrigan, “Pesticides and Human Reproduction,” JAMA Internal Medicine, 2018, 178:1, DOI:10.1001/jamainternmed.2017.5092

SUMMARY:

Invited commentary by Managing Weeds for Healthy Kids science team member Dr. Landrigan reports that herbicide use has increased sharply, with glyphosate use up 250-fold from 1974 to 2014.  And, “measurable levels of multiple pesticides are found in the bodies of nearly all Americans…and pesticides are capable of causing a wide range of asymptomatic effects at levels of exposure too low to produce overt signs and symptoms.”  New theories suggest that long term exposure to pesticides cause this kind of subclinical toxicity.  Dr. Landrigan reviews the known linkages, including in utero chlorpyrifos exposure leading to neurodevelopmental deficits, and reproductive injury including adverse birth outcomes and birth defects. He recommends: “We need to overcome the strident objections of the pesticide manufacturing industry, recognize the hidden costs of deregulation, and strengthen requirements for both premarket testing of new pesticides, as well as postmarketing surveillance of exposed populations— exactly as we do for another class of potent, biologically active molecules—drugs.”  FULL TEXT

Weichenthal et al., 2010

Scott Weichenthal, Connie Moase, and Peter Chan, “A Review of Pesticide Exposure and Cancer Incidence in the Agricultural Health Study Cohort,” Environmental Health Perspectives, 118, DOI: 10.1289/ehp.0901731

ABSTRACT:

OBJECTIVE: We reviewed epidemiologic evidence related to occupational pesticide exposures and cancer incidence in the Agricultural Health Study (AHS) cohort.

DATA SOURCES: Studies were identified from the AHS publication list available at http://aghealth.nci.nih.gov as well as through a Medline/PubMed database search in March 2009. We also examined citation lists. Findings related to lifetime-days and/or intensity-weighted lifetime-days of pesticide use are the primary focus of this review, because these measures allow for the evaluation of potential exposure–response relationships.

DATA SYNTHESIS: We reviewed 28 studies; most of the 32 pesticides examined were not strongly associated with cancer incidence in pesticide applicators. Increased rate ratios (or odds ratios) and positive exposure–response patterns were reported for 12 pesticides currently registered in Canada and/or the United States (alachlor, aldicarb, carbaryl, chlorpyrifos, diazinon, dicamba, S-ethyl-N,N-dipropylthiocarbamate, imazethapyr, metolachlor, pendimethalin, permethrin, trifluralin). However, estimates of association for specific cancers were often imprecise because of small numbers of exposed cases, and clear monotonic exposure–response patterns were not always apparent. Exposure misclassification is also a concern in the AHS and may limit the analysis of exposure–response patterns. Epidemiologic evidence outside the AHS remains limited with respect to most of the observed associations, but animal toxicity data support the biological plausibility of relationships observed for alachlor, carbaryl, metolachlor, pendimethalin, permethrin, and trifluralin.

CONCLUSIONS: Continued follow-up is needed to clarify associations reported to date. In particular, further evaluation of registered pesticides is warranted.

FULL TEXT

Eskenazi et al., 2004

Brenda Eskenazi, Kim Harley, Asa Bradman, Erin Weltzien, Nicholas P. Jewell, Dana B. Barr, Clement E. Furlong, and Nina T. Holland, “Association of in Utero Organophosphate Pesticide Exposure and Fetal Growth and Length of Gestation in an Agricultural Population,” Environmental Health Perspecitives, 112:10, 2004, DOI: 10.1289/ehp.6789

ABSTRACT:

Although pesticide use is widespread, little is known about potential adverse health effects of in utero exposure. We investigated the effects of  organophosphate pesticide exposure during pregnancy on fetal growth and gestational duration in a cohort of low-income, Latina women living in an agricultural community in the Salinas Valley, California. We measured nonspecific metabolites of organophosphate pesticides (dimethyl and diethyl phosphates) and metabolites specific to malathion (malathion dicarboxylic acid), chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridinyl) phosphoro-thioate], and parathion (4-nitrophenol) in maternal urine collected twice during pregnancy. We also measured levels of cholinesterase in whole blood and butyryl cholinesterase in plasma in maternal and umbilical cord blood. We failed to demonstrate an adverse relationship between fetal growth and any measure of in utero organophosphate pesticide exposure. In fact, we found increases in body length and head circumference associated with some exposure measures.
However, we did find decreases in gestational duration associated with two measures of in utero pesticide exposure: urinary dimethyl phosphate metabolites [βadjusted = –0.41 weeks per log10 unit increase; 95% confidence interval (CI), –0.75––0.02; p = 0.02], which reflect exposure to dimethyl organophosphate compounds such as malathion, and umbilical cord cholinesterase (βadjusted = 0.34 weeks per unit increase; 95% CI, 0.13–0.55; p = 0.001). Shortened gestational duration was most clearly related to increasing exposure levels in the latter part of pregnancy. These associations with gestational age may be biologically plausible given that organophosphate pesticides depress cholinesterase and acetylcholine stimulates contraction of the uterus. However, despite these observed associations, the rate of preterm delivery in this population (6.4%) was lower than in a U.S. reference population.   FULL TEXT

Curwin et al., 2007

Brian Curwin, Misty Hein, Wayne Sanderson, Cynthia Striley, Dick Heederik, Hans Kromhout, Stephen Reynolds, Michael Alavanja, “Urinary Pesticide Concentrations Among Children, Mothers and Fathers Living in Farm and Non-Farm Households in Iowa,” The Annals of Occupational Hygiene, 51:1, January 2007, DOI: 10.1093/annhyg/mel062

ABSTRACT:

In the spring and summer of 2001, 47 fathers, 48 mothers and 117 children of Iowa farm and non-farm households were recruited to participate in a study investigating take-home pesticide exposure. On two occasions ∼1 month apart, urine samples from each participant and dust samples from various rooms were collected from each household and were analyzed for atrazine, metolachlor, glyphosate and chlorpyrifos or their metabolites. The adjusted geometric mean (GM) level of the urine metabolite of atrazine was significantly higher in fathers, mothers and children from farm households compared with those from non-farm households (P ≤ 0.0001). Urine metabolites of chlorpyrifos were significantly higher in farm fathers (P = 0.02) and marginally higher in farm mothers (P = 0.05) when compared with non-farm fathers and mothers, but metolachlor and glyphosate levels were similar between the two groups. GM levels of the urinary metabolites for chlorpyrifos, metolachlor and glyphosate were not significantly different between farm children and non-farm children. Farm children had significantly higher urinary atrazine and chlorpyrifos levels (P = 0.03 and P = 0.03 respectively) when these pesticides were applied by their fathers prior to sample collection than those of farm children where these pesticides were not recently applied. Urinary metabolite concentration was positively associated with pesticide dust concentration in the homes for all pesticides except atrazine in farm mothers; however, the associations were generally not significant. There were generally good correlations for urinary metabolite levels among members of the same family.  FULL TEXT
Back To Top