skip to Main Content

Bibliography Tag: crop science

Associated Press, 2017b

Associated Press, “Farm chemical linked to oak damage,” July 2, 2017, Quad-City Times,

SUMMARY:

Reports that almost 1,000 residents of Iowa have contacted the state Department of Natural Resources about damaged leaves on oak trees (photo, right) that looked like insect damage.  Research from the University of Illinois in 2004 showed that herbicide drift was likely linked to the condition, known as leaf tatters, due to exposure to chloroacetanilide herbicides like dicamba.  Exposure occurs from direct drift but also through atmospheric volubility in areas not close to where the herbicide was applied. White oaks are particularly susceptible, and trees can die if damage to the leaves occurs over multiple years.   FULL TEXT

Purdue Extension, 2013

Purdue Extension, “Corn and Soybean Herbicide Chart,” 2013.

ABSTRACT:

This chart groups herbicides by their modes of action to assist you in selecting herbicides 1) to maintain greater diversity in herbicide use and 2) to rotate among herbicides with different sites of action to delay the development of herbicide resistance.  FULL TEXT

Hartzler et al., 2006

Bob Hartzler, Chris Boerboom, Glenn Nice, Peter Sikkema, “Understanding Glyphosate To Increase Performance: The Glyphosate, Weeds, and Crops Series,” Purdue Extension, 2006.

ABSTRACT:

Glyphosate and Roundup Ready® crops are popular because they provide consistent, broad spectrum weed control with minimal risk of crop injury. On occasion, however, growers experience poor weed control with glyphosate, generally because of application or weather-related factors. This publication examines the factors that affect glyphosate performance and offers management strategies to minimize fluctuations in its effectiveness.  FULL TEXT

DuPont Pioneer, 2015

DuPont Pioneer (Canada), “From seed to harvest 2015: Pioneer brand products and services,” 2015.

SUMMARY:

Industry brochure of products and services available in 2015 for Canadian farmers.

FULL TEXT

 

Bohn et al., 2014

T. Bøhn, , M. Cuhra, T. Traavik, M. Sanden, J. Fagan, R. Primicerio, “Compositional differences in soybeans on the market: Glyphosate accumulates in Roundup Ready GM soybeans,” Food Chemistry, 2014, 153, DOI: 10.1016/J.FOODCHEM.2013.12.054.

ABSTRACT:

This article describes the nutrient and elemental composition, including residues of herbicides and pesticides, of 31 soybean batches from Iowa, USA. The soy samples were grouped into three different categories: (i) genetically modified, glyphosate-tolerant soy (GM-soy); (ii) unmodified soy cultivated using a conventional ‘‘chemical’’ cultivation regime; and (iii) unmodified soy cultivated using an organic cultivation regime. Organic soybeans showed the healthiest nutritional profile with more sugars, such as glucose, fructose, sucrose and maltose, significantly more total protein, zinc and less fibre than both conventional and GM-soy. Organic soybeans also contained less total saturated fat and total omega-6 fatty acids than both conventional and GM-soy. GM-soy contained high residues of glyphosate and AMPA (mean 3.3 and 5.7 mg/kg, respectively). Conventional and organic soybean batches contained none of these agrochemicals. Using 35 different nutritional and elemental variables to characterise each soy sample, we were able to discriminate GM, conventional and organic soybeans without exception, demonstrating ‘‘substantial non-equivalence’’ in compositional characteristics for ‘ready-to-market’ soybeans.  FULL TEXT

Szekacs and Darvas, 2012

András Székács and Béla Darvas, “Forty Years with Glyphosate,” 2010, in Herbicides- Properties, Synthesis, and Control of Weeds, edited by Mohammed Naguib Abd El-Ghany Hasaneen.

ABSTRACT:

Not Available

FULL TEXT

 

Dill et al., 2010

Gerald M. Dill, R. Douglas Sammons, Paul C. C.  Feng, Frank Kohn, Keith Kretzmer, Akbar Mehrsheikh, Marion Bleeke, Joy L. Honegger, Donna Farmer, Dan Wright, and Eric A. Haupfear, “Glyphosate: Discovery, Development, Applications, and Properties,” 2010, in Glyphosate Resistance in Crops and Weeds: History, Development, and Management, Edited by Vijay K. Nandula.

ABSTRACT:

Not Avaialble

FULL TEXT

Evans et al., 2015

Jeffrey A Evans, Patrick J Tranel, Aaron G Hager, Brian Schutte, Chenxi Wu,  Laura A Chatham, and Adam S Davis,  “Managing the evolution of herbicide resistance,” 2015, Pest Management Science, 72, DOI 10.1002/ps.4009.

ABSTRACT:

BACKGROUND: Understanding and managing the evolutionary responses of pests and pathogens to control efforts is essential to human health and survival. Herbicide-resistant (HR) weeds undermine agricultural sustainability, productivity and profitability, yet the epidemiology of resistance evolution – particularly at landscape scales – is poorly understood. We studied glyphosate resistance in a major agricultural weed, Amaranthus tuberculatus (common waterhemp), using landscape, weed and management data from 105 central Illinois grain farms, including over 500 site-years of herbicide application records.

RESULTS: Glyphosate-resistant (GR) A. tuberculatus occurrence was greatest in fields with frequent glyphosate applications, high annual rates of herbicide mechanism of action (MOA) turnover and few MOAs/field/year. Combining herbicide MOAs at the time of application by herbicide mixing reduced the likelihood of GR A. tuberculatus.

CONCLUSIONS: These findings illustrate the importance of examining large-scale evolutionary processes at relevant spatial scales. Although measures such as herbicide mixing may delay GR or other HR weed traits, they are unlikely to prevent them. Long-term weed management will require truly diversified management practices that minimize selection for herbicide resistance traits.  FULL TEXT

Casteel, 2017

Shaun Casteel, “Soybean Physiology: How Well Do You Know Soybeans?,” 2017, Slide Presentation Prepared for Purdue University Soybean Station.

ABSTRACT: Not Available

FULL TEXT

Pleasants and Oberhauser, 2012

John M. Pleasants and Karen S. Oberhauser, “Milkweed loss in agricultural fields because of herbicide use: effect on the monarch butterfly population,” Insect Conservation and Diversity, 2012, 6:2, DOI: 10.1111/J.1752-4598.2012.00196.X.

ABSTRACT:

1. The size of the Mexican overwintering population of monarch butter- flies has decreased over the last decade. Approximately half of these butterflies come from the U.S. Midwest where larvae feed on common milkweed. There has been a large decline in milkweed in agricultural fields in the Midwest over the last decade. This loss is coincident with the increased use of glyphosate herbicide in conjunction with increased planting of genetically modified (GM) glyphosate-tolerant corn (maize) and soybeans (soya).

2. We investigate whether the decline in the size of the overwintering population can be attributed to a decline in monarch production owing to a loss of milkweeds in agricultural fields in the Midwest. We estimate Midwest annual monarch production using data on the number of monarch eggs per milkweed plant for milkweeds in different habitats, the density of milkweeds in different habitats, and the area occupied by those habitats on the landscape.

3. We estimate that there has been a 58% decline in milkweeds on the Midwest landscape and an 81% decline in monarch production in the Midwest from 1999 to 2010. Monarch production in the Midwest each year was positively correlated with the size of the subsequent overwintering population in Mexico. Taken together, these results strongly suggest that a loss of agricultural milkweeds is a major contributor to the decline in the monarch population.

4. The smaller monarch population size that has become the norm will make the species more vulnerable to other conservation threats.  FULL TEXT

Back To Top