skip to Main Content

Bibliography Tag: cytotoxicity

Abdel-Halim and Osman, 2020

Abdel-Halim, K. Y., & Osman, S. R.; “Cytotoxicity and Oxidative Stress Responses of Imidacloprid and Glyphosate in Human Prostate Epithelial WPM-Y.1 Cell Line;” Journal of Toxicology, 2020, 2020, 4364650; DOI: 10.1155/2020/4364650.

ABSTRACT:

Insecticide imidacloprid and herbicide glyphosate have a broad spectrum of applicable use in the agricultural sector of Egypt. Their ability to induce in vitro cytotoxic and oxidative stress on normal human cells (prostate epithelial WPM-Y.1 cell line) was evaluated with the methyl tetrazolium test (MTT) and histopathological investigation. Cell viability was evaluated with an MTT test for 24 h. The median inhibition concentration (IC50) values were 0.023 and 0.025 mM for imidacloprid and glyphosate, respectively. Sublethal concentrations: 1/10 and 1/50 of IC50 and IC50 levels significantly induced an increase in the lactate dehydrogenase (LDH) activity and malondialdehyde (MDA) level compared with the untreated cells. Rapid decrease in the glutathione (GSH) content and glutathione-S-transferase (GST) activity was induced. Significant increases were recorded in activities of catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR), respectively, compared with the control group. Transmission electron microscopic (TEM) investigation showed significant defects in the cells following pesticide treatments for 24 h. Therefore, it is concluded that imidacloprid and glyphosate are very toxic in vitro assays and able to induce apoptotic effects as well as oxidative stress. So, these findings provide a scenario of multibiomarkers to achieve the imposed risks of pesticides at low doses. FULL TEXT

Hernandez et al., 2006

Hernandez, A. F., Amparo Gomez, M., Perez, V., Garcia-Lario, J. V., Pena, G., Gil, F., Lopez, O., Rodrigo, L., Pino, G., & Pla, A.; “Influence of exposure to pesticides on serum components and enzyme activities of cytotoxicity among intensive agriculture farmers;” Environmental Research, 2006, 102(1), 70-76; DOI: 10.1016/j.envres.2006.03.002.

ABSTRACT:

Although the effects of acute pesticide poisoning are well known for the pesticides most currently used, hardly any data exist on health effects after long-term low-dose exposures. Major unresolved issues include the effect of moderate exposure in the absence of poisoning. The increased utilization of pesticides other than organophosphates makes it even more difficult to find associations. In this study a cohort of 106 intensive agriculture workers were assessed twice during the course of a spraying season for changes in serum biochemistry, namely enzymes reflecting cytotoxicity (AST, ALT, LDH, CK, and amino-oxidase) and other biochemical parameters, such as markers of nephrotoxicity (urea, creatinine) and lipid profile (cholesterol and triglycerides). Several criteria for estimating pesticide exposure were used, the most important one being serum cholinesterase depression greater than 25% from baseline to peak exposure. Our results revealed an association of pesticide exposure with changes in AST (increased activity), LDH, and amino-oxidase (decreased activity) as well as with changes in serum creatinine and phosphorus (lower and higher levels, respectively). These results provide support for a very slight impairment of the liver function, but overall these findings are consistent with no clinically significant hepatotoxicity. Intriguingly, paraoxonase-1 R allele was found to be an independent predictor of higher rates of AST and lower rates of amino-oxidase, so that it may play a supporting role as an individual marker of susceptibility on pesticide-induced health effects. In conclusion, different biomarkers might be used to detect early biochemical effects of pesticides before adverse clinical health effects occur. FULL TEXT

Heu et al., 2012

Heu, C., Elie-Caille, C., Mougey, V., Launay, S., & Nicod, L.; “A step further toward glyphosate-induced epidermal cell death: involvement of mitochondrial and oxidative mechanisms;” Environmental Toxicology and Pharmacology, 2012, 34(2), 144-153; DOI: 10.1016/j.etap.2012.02.010.

ABSTRACT:

A deregulation of programmed cell death mechanisms in human epidermis leads to skin pathologies. We previously showed that glyphosate, an extensively used herbicide, provoked cytotoxic effects on cultured human keratinocytes, affecting their antioxidant capacities and impairing morphological and functional cell characteristics. The aim of the present study, carried out on the human epidermal cell line HaCaT, was to examine the part of apoptosis plays in the cytotoxic effects of glyphosate and the intracellular mechanisms involved in the apoptotic events. We have conducted different incubation periods to reveal the specific events in glyphosate-induced cell death. We observed an increase in the number of early apoptotic cells at a low cytotoxicity level (15%), and then, a decrease, in favor of late apoptotic and necrotic cell rates for more severe cytotoxicity conditions. At the same time, we showed that the glyphosate-induced mitochondrial membrane potential disruption could be a cause of apoptosis in keratinocyte cultures. FULL TEXT

El-Shenawy, 2009

El-Shenawy, Nahla S.; “Oxidative stress responses of rats exposed to Roundup and its active ingredient glyphosate;” Environmental Toxicology and Pharmacology, 2009, 28(3), 379-385; DOI: 10.1016/j.etap.2009.06.001.

Glyphosate is the active ingredient and polyoxyethyleneamine, the major component, is the surfactant present in the herbicide Roundup formulation. The objective of this study was to analyze potential cytotoxicity of the Roundup and its fundamental substance (glyphosate). Albino male rats were intraperitoneally treated with sub-lethal concentration of Roundup (269.9mg/kg) or glyphosate (134.95mg/kg) each 2 days, during 2 weeks. Hepatotoxicity was monitored by quantitative analysis of the serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities, total protein, albumin, triglyceride and cholesterol. Creatinine and urea were used as the biochemical markers of kidney damages. The second aim of this study to investigate how glyphosate alone or included in herbicide Roundup affected hepatic reduced glutathione (GSH) and lipid peroxidation (LPO) levels of animals as an index of antioxidant status and oxidative stress, respectively, as well as the serum nitric oxide (NO) and alpha tumour necrosis factor (TNF-α) were measured. Treatment of animals with Roundup induced the leakage of hepatic intracellular enzymes, ALT, AST and ALP suggesting irreversible damage in hepatocytes starting from the first week. It was found that the effects were different on the enzymes in Roundup and glyphosate-treated groups. Significant time-dependent depletion of GSH levels and induction of oxidative stress in liver by the elevated levels of LPO, further confirmed the potential of Roundup to induce oxidative stress in hepatic tissue. However, glyphosate caused significant increases in NO levels more than Roundup after 2 weeks of treatment. Both treatments increased the level of TNF-α by the same manner. The results suggest that excessive antioxidant disruptor and oxidative stress is induced with Roundup than glyphosate.

Stur et al., 2019

Stur, E., Aristizabal-Pachon, A. F., Peronni, K. C., Agostini, L. P., Waigel, S., Chariker, J., Miller, D. M., Thomas, S. D., Rezzoug, F., Detogni, R. S., Reis, R. S. D., Silva Junior, W. A., & Louro, I. D.; “Glyphosate-based herbicides at low doses affect canonical pathways in estrogen positive and negative breast cancer cell lines;” Plos One, 2019, 14(7), e0219610; DOI: 10.1371/journal.pone.0219610.

ABSTRACT:

Glyphosate is a broad-spectrum herbicide that is used worldwide. It represents a potential harm to surface water, and when commercially mixed with surfactants, its uptake is greatly magnified. The most well-known glyphosate-based product is Roundup. This herbicide is potentially an endocrine disruptor and many studies have shown the cytotoxicity potential of glyphosate-based herbicides. In breast cancer (BC) cell lines it has been demonstrated that glyphosate can induce cellular proliferation via estrogen receptors. Therefore, we aimed to identify gene expression changes in ER+ and ER- BC cell lines treated with Roundup and AMPA, to address changes in canonical pathways that would be related or not with the ER pathway, which we believe could interfere with cell proliferation. Using the Human Transcriptome Arrays 2.0, we identified gene expression changes in MCF-7 and MDA-MB-468 exposed to low concentrations and short exposure time to Roundup Original and AMPA. The results showed that at low concentration (0.05% Roundup) and short exposure (48h), both cell lines suffered deregulation of 11 canonical pathways, the most important being cell cycle and DNA damage repair pathways. Enrichment analysis showed similar results, except that MDA-MB-468 altered mainly metabolic processes. In contrast, 48h 10mM AMPA showed fewer differentially expressed genes, but also mainly related with metabolic processes. Our findings suggest that Roundup affects survival due to cell cycle deregulation and metabolism changes that may alter mitochondrial oxygen consumption, increase ROS levels, induce hypoxia, damage DNA repair, cause mutation accumulation and ultimately cell death. To our knowledge, this is the first study to analyze the effects of Roundup and AMPA on gene expression in triple negative BC cells. Therefore, we conclude that both compounds can cause cellular damage at low doses in a relatively short period of time in these two models, mainly affecting cell cycle and DNA repair. FULL TEXT

Townsend et al., 2017

Townsend, M., Peck, C., Meng, W., Heaton, M., Robison, R., & O’Neill, K., “Evaluation of various glyphosate concentrations on DNA damage in human Raji cells and its impact on cytotoxicity,” Regulatory Toxicology and Pharmacology, 2017, 85, 79-85. DOI: 10.1016/j.yrtph.2017.02.002.

ABSTRACT:

Glyphosate is a highly used active compound in agriculturally based pesticides. The literature regarding the toxicity of glyphosate to human cells has been highly inconsistent. We studied the resulting DNA damage and cytotoxicity of various glyphosate concentrations on human cells to evaluate DNA damaging potential. Utilizing human Raji cells, DNA damage was quantified using the comet assay, while cytotoxicity was further analyzed using MTT viability assays. Several glyphosate concentrations were assessed, ranging from 15 mM to 0.1 muM. We found that glyphosate treatment is lethal to Raji cells at concentrations above 10 mM, yet has no cytotoxic effects at concentrations at or below 100 muM. Treatment concentrations of 1 mM and 5 mM induce statistically significant DNA damage to Raji cells following 30-60 min of treatment, however, cells show a slow recovery from initial damage and cell viability is unaffected after 2 h. At these same concentrations, cells treated with additional compound did not recover and maintained high levels of DNA damage. While the cytotoxicity of glyphosate appears to be minimal for physiologically relevant concentrations, the compound has a definitive cytotoxic nature in human cells at high concentrations. Our data also suggests a mammalian metabolic pathway for the degradation of glyphosate may be present. FULL TEXT

Luo et al., 2017

Luo, Lei, Wang, Fei, Zhang, Yiyuan, Zeng, Ming, Zhong, Caigao, & Xiao, Fang, “In vitro cytotoxicity assessment of Roundup (glyphosate) in L-02 hepatocytes,” Journal of Environmental Science and Health, Part B, 2017, 52(6), 410-417. DOI: 10.1080/03601234.2017.1293449.

ABSTRACT:

The goal of the present study was to elucidate the in vitro cytotoxicity of Roundup and to reveal the possible related mechanisms in L-02 hepatocytes. By detecting reactive oxygen species (ROS) production, glutathione (GSH)/superoxide dismutase (SOD) levels, mitochondrial permeability transition pore (PTP) open rate, apoptosis-inducing factor (AIF) release, intracellular Ca2+ concentration, and alanine aminotransferease (ALT)/aspartate aminotransferase (AST) leakage, we determined that Roundup induced anti-oxidant system inhibition, mitochondria damage, DNA damage, membrane integrity and permeability changes, and apoptosis in L-02 hepatocytes. By revealing the mechanistic insights of Roundup-induced cytotoxicity, our results are valuable for the design of preventive and therapeutic strategies for the occupational population exposed to Roundup and other pesticides.

De Almeida et al., 2018

De Almeida, L. K. S., Pletschke, B. I., & Frost, C. L., “Moderate levels of glyphosate and its formulations vary in their cytotoxicity and genotoxicity in a whole blood model and in human cell lines with different estrogen receptor status,” 3 Biotech, 2018, 8(10), 438. DOI: 10.1007/s13205-018-1464-z.

ABSTRACT:

In vitro studies were conducted to determine the short-term cytotoxic and genotoxic effects of pure glyphosate and two glyphosate formulations (Roundup® and Wipeout®) at concentrations relevant to human exposure using whole blood (cytotoxicity) and various cancer cell lines (cytotoxicity and genotoxicity). Pure glyphosate (pure glyph) and Roundup® (Ro) showed similar non-monotonic toxicological profiles at low dose exposure (from 10 microg/ml), whereas Wipeout® (Wo) demonstrated a monotonic reduction in cell viability from a threshold concentration of 50 microg/ml, when tested in whole blood. We evaluated whether using various cancer cells (the estrogen-E2-responsive HEC1A, MCF7 and the estrogen-insensitive MDA-MB-231) exposed to moderate doses (75-500 microg/ml) would indicate varied toxicity and results indicated significant effects in the HEC1A cancer cells. A non-monotonic reduction in cell viability was observed in HEC1A exposed to pure glyph (75-500 microg/ml) and proliferative effects were observed after exposure to Wo (75, 125 and 250 microg/ml). Genotoxicity assessment (test concentration 500 microg/ml) demonstrated DNA damage in the HEC1A and MDA-MB-231 cells. Adjuvants and/or glyphosate impurities were potential contributing factors of toxicity based on the differential toxicities displayed by Ro and Wo in human whole blood and the HEC1A cells. This study contributes to the existing knowledge about in vitro exposure to moderate concentrations of glyphosate or glyphosate formulations at cytotoxic and genotoxic levels. In addition, a suggestion on the relevance of the estrogen receptor status of the cell lines used is provided, leading to the need to further investigate a potential endocrine disruptive role. FULL TEXT

Gasnier et al., 2009.

Gasnier C, Dumont C, Benachour N, Clair E, Chagnon MC, Séralini GE, “Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines,” Toxicology, 2009, 262:3. DOI: 10.1016/j.tox.2009.06.006.

ABSTRACT: Glyphosate-based herbicides are the most widely used across the world; they are commercialized in different formulations. Their residues are frequent pollutants in the environment. In addition, these herbicides are spread on most eaten transgenic plants, modified to tolerate high levels of these compounds in their cells. Up to 400 ppm of their residues are accepted in some feed. We exposed human liver HepG2 cells, a well-known model to study xenobiotic toxicity, to four different formulations and to glyphosate, which is usually tested alone in chronic in vivo regulatory studies. We measured cytotoxicity with three assays (Alamar Blue, MTT, ToxiLight), plus genotoxicity (comet assay), anti-estrogenic (on ERalpha, ERbeta) and anti-androgenic effects (on AR) using gene reporter tests. We also checked androgen to estrogen conversion by aromatase activity and mRNA. All parameters were disrupted at sub-agricultural doses with all formulations within 24h. These effects were more dependent on the formulation than on the glyphosate concentration. First, we observed a human cell endocrine disruption from 0.5 ppm on the androgen receptor in MDA-MB453-kb2 cells for the most active formulation (R400), then from 2 ppm the transcriptional activities on both estrogen receptors were also inhibited on HepG2. Aromatase transcription and activity were disrupted from 10 ppm. Cytotoxic effects started at 10 ppm with Alamar Blue assay (the most sensitive), and DNA damages at 5 ppm. A real cell impact of glyphosate-based herbicides residues in food, feed or in the environment has thus to be considered, and their classifications as carcinogens/mutagens/reprotoxics is discussed.

Back To Top