skip to Main Content

Bibliography Tag: dicamba or 2 4 d

Burns and Swaen, 2012

Burns, C. J., & Swaen, G. M.; “Review of 2,4-dichlorophenoxyacetic acid (2,4-D) biomonitoring and epidemiology;” Critical Reviews in Toxicology, 2012, 42(9), 768-786; DOI: 10.3109/10408444.2012.710576.

ABSTRACT:

A qualitative review of the epidemiological literature on the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and health after 2001 is presented. In order to compare the exposure of the general population, bystanders and occupational groups, their urinary levels were also reviewed. In the general population, 2,4-D exposure is at or near the level of detection (LOD). Among individuals with indirect exposure, i.e. bystanders, the urinary 2,4-D levels were also very low except in individuals with opportunity for direct contact with the herbicide. Occupational exposure, where exposure was highest, was positively correlated with behaviors related to the mixing, loading and applying process and use of personal protection. Information from biomonitoring studies increases our understanding of the validity of the exposure estimates used in epidemiology studies. The 2,4-D epidemiology literature after 2001 is broad and includes studies of cancer, reproductive toxicity, genotoxicity, and neurotoxicity. In general, a few publications have reported statistically significant associations. However, most lack precision and the results are not replicated in other independent studies. In the context of biomonitoring, the epidemiology data give no convincing or consistent evidence for any chronic adverse effect of 2,4-D in humans. FULL TEXT

Rappazzo et al., 2018

Rappazzo, K. M., Warren, J. L., Davalos, A. D., Meyer, R. E., Sanders, A. P., Brownstein, N. C., & Luben, T. J.; “Maternal residential exposure to specific agricultural pesticide active ingredients and birth defects in a 2003-2005 North Carolina birth cohort;” Birth Defects Research, 2018; DOI: 10.1002/bdr2.1448.

ABSTRACT:

BACKGROUND: Previously we observed elevated odds ratios (ORs) for total pesticide exposure and 10 birth defects: three congenital heart defects and structural defects affecting the gastrointestinal, genitourinary and musculoskeletal systems. This analysis examines association of those defects with exposure to seven commonly applied pesticide active ingredients.

METHODS: Cases were live-born singleton infants from the North Carolina Birth Defects Monitoring Program linked to birth records for 2003-2005; noncases served as controls (total n = 304,906). Pesticide active ingredient exposure was assigned using a previously constructed metric based on crops within 500 m of residence, dates of pregnancy, and likely chemical application dates for each pesticide-crop combination. ORs (95% CI) were estimated with logistic regression for categories of exposure compared to unexposed. Models were adjusted for maternal race/ethnicity, age at delivery, education, marital status, and smoking status.

RESULTS: Associations varied by birth defect and pesticide combinations. For example, hypospadias was positively associated with exposures to 2,4-D (OR50th to <90th percentile : 1.39 [1.18, 1.64]), mepiquat (OR50th to <90th percentile : 1.10 [0.90, 1.34]), paraquat (OR50th to <90th : 1.14 [0.93, 1.39]), and pendimethalin (OR50th to <90th : 1.21 [1.01, 1.44]), but not S-metolachlor (OR50th to <90th : 1.00 [0.81, 1.22]). Whereas atrial septal defects were positively associated with higher levels of exposure to glyphosate, cyhalothrin, S-metolachlor, mepiquat, and pendimethalin (ORs ranged from 1.22 to 1.35 for 50th to <90th exposures, and 1.72 to 2.09 for >90th exposures); associations with paraquat were null or inconsistent (OR 50th to <90th: 1.05 (0.87, 1.27).

CONCLUSION: Our results suggest differing patterns of association for birth defects with residential exposure to seven pesticide active ingredients in North Carolina.

Rappazzo et al., 2018

Rappazzo, K. M., Warren, J. L., Davalos, A. D., Meyer, R. E., Sanders, A. P., Brownstein, N. C., & Luben, T. J.; “Maternal residential exposure to specific agricultural pesticide active ingredients and birth defects in a 2003-2005 North Carolina birth cohort;” Birth Defects Research, 2018; DOI: 10.1002/bdr2.1448.

ABSTRACT:

BACKGROUND: Previously we observed elevated odds ratios (ORs) for total pesticide exposure and 10 birth defects: three congenital heart defects and structural defects affecting the gastrointestinal, genitourinary and musculoskeletal systems. This analysis examines association of those defects with exposure to seven commonly applied pesticide active ingredients.

METHODS: Cases were live-born singleton infants from the North Carolina Birth Defects Monitoring Program linked to birth records for 2003-2005; noncases served as controls (total n = 304,906). Pesticide active ingredient exposure was assigned using a previously constructed metric based on crops within 500 m of residence, dates of pregnancy, and likely chemical application dates for each pesticide-crop combination. ORs (95% CI) were estimated with logistic regression for categories of exposure compared to unexposed. Models were adjusted for maternal race/ethnicity, age at delivery, education, marital status, and smoking status.

RESULTS: Associations varied by birth defect and pesticide combinations. For example, hypospadias was positively associated with exposures to 2,4-D (OR50th to <90th percentile : 1.39 [1.18, 1.64]), mepiquat (OR50th to <90th percentile : 1.10 [0.90, 1.34]), paraquat (OR50th to <90th : 1.14 [0.93, 1.39]), and pendimethalin (OR50th to <90th : 1.21 [1.01, 1.44]), but not S-metolachlor (OR50th to <90th : 1.00 [0.81, 1.22]). Whereas atrial septal defects were positively associated with higher levels of exposure to glyphosate, cyhalothrin, S-metolachlor, mepiquat, and pendimethalin (ORs ranged from 1.22 to 1.35 for 50th to <90th exposures, and 1.72 to 2.09 for >90th exposures); associations with paraquat were null or inconsistent (OR 50th to <90th: 1.05 (0.87, 1.27).

CONCLUSION: Our results suggest differing patterns of association for birth defects with residential exposure to seven pesticide active ingredients in North Carolina.

Aylward et al., 2010

Aylward, Lesa L., Morgan, Marsha K., Arbuckle, Tye E., Barr, Dana B., Burns, Carol J., Alexander, Bruce H., & Hays, Sean M.; “Biomonitoring data for 2,4-dichlorophenoxyacetic acid in the United States and Canada: Interpretation in a public health risk assessment context using biomonitoring equivalents;” Environmental Health Perspectives, 2010, 118, 177-181; DOI: 10.1289/ehp.0900970.

ABSTRACT:

BACKGROUND: Several extensive studies of exposure to 2,4-dichlorophenoxyacetic acid (2,4-D) using urinary concentrations in samples from the general population, farm applicators, and farm family members are now available. Reference doses (RfDs) exist for 2,4-D, and Biomonitoring Equivalents (BEs; concentrations in urine or plasma that are consistent with those RfDs) for 2,4-D have recently been derived and published.

OBJECTIVE: We reviewed the available biomonitoring data for 2,4-D from the United States and Canada and compared them with BE values to draw conclusions regarding the margin of safety for 2,4-D exposures within each population group.

DATA SOURCES: Data on urinary 2,4-D excretion in general and target populations from recent published studies are tabulated and the derivation of BE values for 2,4-D summarized.

DATA SYNTHESIS: The biomonitoring data indicate margins of safety (ratio of BE value to biomarker concentration) of approximately 200 at the central tendency and 50 at the extremes in the general population. Median exposures for applicators and their family members during periods of use appear to be well within acute exposure guidance values.

CONCLUSIONS: Biomonitoring data from these studies indicate that current exposures to 2,4-D are below applicable exposure guidance values. This review demonstrates the value of biomonitoring data in assessing population exposures in the context of existing risk assessments using the BE approach. Risk managers can use this approach to integrate the available biomonitoring data into an overall assessment of current risk management practices for 2,4-D.

FULL TEXT

 

Shealy et al., 1996

Shealy, Dana B., Bonin, Michael A., Wooten, Joe V., Ashley, David L., Needham, Larry L., & Bond, Andrew E.; “Application of an improved method for the analysis of pesticides and their metabolites in the urine of farmer applicators and their families;” Environment International, 1996, 22(6), 661-675; DOI: 10.1016/s0160-4120(96)00058-x.

ABSTRACT:

As the annual use of pesticides in the United States has escalated, public health agencies have become increasingly concerned about chronic pesticide exposure. However, without reliable, accurate analytical methods for biological monitoring, low-level chronic exposures are often difficult to assess. A method for measuring simultaneously the urinary residues of as many as 20 pesticides has been significantly improved. The method uses a sample preparation which includes enzyme digestion, extraction, and chemical derivatization of the analytes. The derivatized analytes are measured by using gas chromatography coupled with isotope-dilution tandem mass spectrometry. The limits of detection of the modified method are in the high pg/L – low μg/L range, and the average coefficient of variation (CV) of the method was below 20% for most analytes, with approximately 100% accuracy in quantification. This method was used to measure the internal doses of pesticides among selected farmer applicators and their families. Definite exposure and elimination patterns (i.e., an increase in urinary analyte levels following application and then a gradual decrease to background levels) were observed among the farmer applicators and many of the family members whose crops were treated with carbaryl, dicamba, and 2,4-D esters and amines. Although the spouses of farm workers sometimes exhibited the same elimination pattern, the levels of the targeted pesticides or metabolites found in their urine were not outside the ranges found in the general U.S. population (reference range). The farmer applicators who applied the pesticides and some of their children appeared to have higher pesticide or metabolite levels in their urine than those found in the general U.S. population, but their levels were generally comparable to or lower than reported levels in other occupationally exposed individuals. These results, however, were obtained from a nonrandom sampling of farm residents specifically targeted to particular exposures who may have altered their practices because they were being observed; therefore, further study is required to determine if these results are representative of pesticide levels among residents on all farms where these pesticides are applied using the same application techniques. Using this method to measure exposure in a small nonrandom farm population allowed differentiation between overt and background exposure. In addition, the important role of reference-range information in distinguishing between various levels of environmental exposure was reaffirmed. FULL TEXT

Harris et al., 2010

Harris, S. A., Villeneuve, P. J., Crawley, C. D., Mays, J. E., Yeary, R. A., Hurto, K. A., & Meeker, J. D.; “National study of exposure to pesticides among professional applicators: an investigation based on urinary biomarkers;” Journal of Agricultural and Food Chemistry, 2010, 58(18), 10253-10261; DOI: 10.1021/jf101209g.

ABSTRACT:

Epidemiologic studies of pesticides have been subject to important biases arising from exposure misclassification. Although turf applicators are exposed to a variety of pesticides, these exposures have not been well characterized. This paper describes a repeated measures study of 135 TruGreen applicators over three spraying seasons via the collection of 1028 urine samples. These applicators were employed in six cities across the United States. Twenty-four-hour estimates (mug) were calculated for the parent compounds 2,4-D, MCPA, mecoprop, dicamba, and imidacloprid and for the insecticide metabolites MPA and 6-CNA. Descriptive statistics were used to characterize the urinary levels of these pesticides, whereas mixed models were applied to describe the variance apportionment with respect to city, season, individual, and day of sampling. The contributions to the overall variance explained by each of these factors varied considerably by the type of pesticide. The implications for characterizing exposures in these workers within the context of a cohort study are discussed. FULL TEXT

Bohnenblust et al., 2016

Bohnenblust, E. W., Vaudo, A. D., Egan, J. F., Mortensen, D. A., & Tooker, J. F.; “Effects of the herbicide dicamba on nontarget plants and pollinator visitation;” Environmental Toxicology and Chemistry, 2016, 35(1), 144-151; DOI: 10.1002/etc.3169.

ABSTRACT:

Nearly 80% of all pesticides applied to row crops are herbicides, and these applications pose potentially significant ecotoxicological risks to nontarget plants and associated pollinators. In response to the widespread occurrence of weed species resistant to glyphosate, biotechnology companies have developed crops resistant to the synthetic-auxin herbicides dicamba and 2,4-dichlorophenoxyacetic acid (2,4-D); and once commercialized, adoption of these crops is likely to change herbicide-use patterns. Despite current limited use, dicamba and 2,4-D are often responsible for injury to nontarget plants; but effects of these herbicides on insect communities are poorly understood. To understand the influence of dicamba on pollinators, the authors applied several sublethal, drift-level rates of dicamba to alfalfa (Medicago sativa L.) and Eupatorium perfoliatum L. and evaluated plant flowering and floral visitation by pollinators. The authors found that dicamba doses simulating particle drift (≈1% of the field application rate) delayed onset of flowering and reduced the number of flowers of each plant species; however, plants that did flower produced similar-quality pollen in terms of protein concentrations. Further, plants affected by particle drift rates were visited less often by pollinators. Because plants exposed to sublethal levels of dicamba may produce fewer floral resources and be less frequently visited by pollinators, use of dicamba or other synthetic-auxin herbicides with widespread planting of herbicide-resistant crops will need to be carefully stewarded to prevent potential disturbances of plant and beneficial insect communities in agricultural landscapes. FULL TEXT

Oseland et al., 2020

Oseland, E., Bish, M., Steckel, L., & Bradley, K.; “Identification of environmental factors that influence the likelihood of off-target movement of dicamba;” Pest Management Science, 2020, 76(9), 3282-3291; DOI: 10.1002/ps.5887.

ABSTRACT:

BACKGROUND: Commercialization of dicamba-resistant soybean and cotton and subsequent post-emergence applications of dicamba contributed to at least 1.4 and 0.5 million hectares of dicamba-injured soybean in the United States in 2017 and 2018, respectively. This research was initiated to identify environmental factors that contribute to off-target dicamba movement. A survey was conducted following the 2017 growing season to collect information from dicamba applications that remained on the target field and those where dicamba moved. Weather and environmental data surrounding applications were collected and used to identify factors that reduce the likelihood of off-target movement. Soil pH was one factor identified in the model, and field experiments were conducted in 2018 and 2019 to validate the model. Three commercially-available dicamba formulations and one formulation currently in development were applied to soil at five distinct pH values. Sensitive soybean was used as a bioassay plant to detect dicamba volatilization.

RESULTS: Wind speeds the day of and following application, nearest water source to the field, soybean production acreage in the county, and soil pH were identified as factors that influence the likelihood for off-target movement. In the field study, when dicamba was applied to pH-adjusted soil and placed under low tunnels for 72 h, dicamba volatility increased when soil pH decreased as the model predicted. Dicamba choline, which is not commercially available, had reduced volatility compared to other formulations tested.

CONCLUSION: Results of this study identified specific factors that contribute to successful and unsuccessful dicamba applications and should be considered prior to applications.

Qi et al., 2020

Qi, M., Huo, J., Li, Z., He, C., Li, D., Wang, Y., Vasylieva, N., Zhang, J., & Hammock, B. D.; “On-spot quantitative analysis of dicamba in field waters using a lateral flow immunochromatographic strip with smartphone imaging;” Analytical and Bioanalytical Chemistry, 2020, 412(25), 6995-7006; DOI: 10.1007/s00216-020-02833-z.

ABSTRACT:

Dicamba herbicide is increasingly used in the world, in particular’ with the widespread cultivation of genetically modified dicamba-resistant crops. However, the drift problem in the field has caused phytotoxicity against naive, sensitive crops, raising legal concerns. Thus, it is particularly timely to develop a method that can be used for on-the-spot rapid detection of dicamba in the field. In this paper, a lateral flow immunochromatographic strip (LFIC) was developed. The quantitative detection can be conducted by an app on a smartphone, named “Color Snap.” The tool reported here provides results in 10 min and can detect dicamba in water with a LOD (detection limit) value of 0.1 mg/L. The developed LFIC shows excellent stability and sensitivity appropriate for field analysis. Our sensor is portable and excellent tool for on-site detection with smartphone imaging for better accuracy and precision of the results.

Riter et al., 2020


Riter, L. S., Sall, E. D., Pai, N., Beachum, C. E., & Orr, T. B.; “Quantifying Dicamba Volatility under Field Conditions: Part I, Methodology;” Journal of Agricultural and Food Chemistry, 2020, 68(8), 2277-2285; DOI: 10.1021/acs.jafc.9b06451.

ABSTRACT:

Quantitative assessment of the volatility of field applied herbicides requires orchestrated sampling logistics, robust analytical methods, and sophisticated modeling techniques. This manuscript describes a comprehensive system developed to measure dicamba volatility in an agricultural setting. Details about study design, sample collection, analytical chemistry, and flux modeling are described. A key component of the system is the interlaboratory validation of an analytical method for trace level detection (limit of quantitation of 1.0 ng/PUF) of dicamba in polyurethane foam (PUF) air samplers. Validation of field sampling and flux methodologies was conducted in a field trial that demonstrated agreement between predicted and directly measured dicamba air concentrations at a series of off-target locations. This validated system was applied to a field case study on two plots to demonstrate the utility of these methods under typical agricultural conditions. This case study resulted in a time-varying volatile flux profile, which showed that less than 0.2 +/- 0.05% of the applied dicamba was volatilized over the 3-day sampling period. FULL TEXT

Back To Top