skip to Main Content

Bibliography Tag: dicamba or 2 4 d

Bradley, 2018a

Kevin Bradley, “July 15 Dicamba injury update. Different Year, same questions,” Integrated Pest Management, University of Missouri, July 19, 2018.

SUMMARY:

latest drift-damage estimates from 2018 have been released by Dr. Kevin Bradley, University of Missouri Division of Plant Sciences. Bradley has been compiling national numbers since the crisis began and is one of the most respected, independent weed scientists trying to help farmers, the ag industry, and regulators find a less costly way to deal with the spread of glyphosate-resistant weeds.

Source: University of Missouri

The map above summarizes the latest data.  An estimated 1.1 million acres of soybeans alone have already been damaged by drifting dicamba.  Illinois, Arkansas, and Missouri are by far the hardest hit by this crisis, now in it’s third year. FULL TEXT

Beck, 2018

Madelyn Beck, “Federal Suit Alleges Companies Knew Dicamba Would Drift, Monsanto Created Monopoly,” KUNC Radio, August 8, 2018.

SUMMARY:

Describes court documents filed August 2018  on two “master complaints” in the dicamba drift Multi District Litigation (MDL) pending in federal court.  The first complaint is a crop damage class action, and the second alleges antitrust violations.  Lawyers representing the plaintiffs allege that defendants Monsanto and BASF are “commercializing a product that literally destroys its competition.”  FULL TEXT

Kennedy, 2018

Merritt Kennedy, “West Texas Vineyards Blasted By Herbicide Drift From Nearby Cotton Fields,” NPR, August 21, 2018.

SUMMARY:

Reports on vineyards in Texas damaged by dicmaba drift from Xtend cotton plantings.  Grapes are particularly sensitive to dicamba, and can take years to recover.  Radio portion includes interviews with farmers on both sides of the issue.  Dicamba injury was recorded on 90-95% of vineyards in some parts of Texas.  FULL TEXT

Polansek, 2018

Tom Polansek, “U.S. seed sellers push for limits on Monsanto, BASF weed killer,” Reuters, August 16, 2018.

SUMMARY:

Reports on the 2018 dicamba drift crisis and the decision by two large U.S. seed sellers to urge EPA to ban dicamba use overtop of growing resistant crops.   Harry Stine, CEO of Stine Seeds, says : ““I’ve been doing this for 50 years and we’ve never had anything be as damaging as this dicamba situation. In this case, Monsanto made an error.”  FULL TEXT

Chow, 2018

Lorraine Chow, “Top Seed Companies Urge EPA to Limit Dicamba,” EcoWatch, August 17, 2018.

SUMMARY:

Reports on comments by top seed companies in U.S. to EPA urging they ban dicamba use in summer and fall.  Includes a statement by Beck’s Hybrids, the largest seed company in the U.S.. FULL TEXT

Steckel, 2018

Larry Steckel, “Dicamba drift problems not an aberration,” Delta Farm Press, August 8, 2018.

SUMMARY:

Veteran Tennessee extension weed scientist Larry Steckel writes about the ongoing drift crisis.  He estimates that only 100,000 acres of non-Xtend soybeans remain in the state, and 40% of those are showing injury from dicamba.  He stand by efforts of applicators to follow the complicated label instructions, and proposes that volatility and temperature inversions are the cause.  FULL TEXT

Bradley, 2018a

Kevin Bradley, “July 15 Dicamba injury update. Different Year, same questions,” University of Missouri, Integrated Pest Management online article, July 19, 2018.

SUMMARY:

First update on 2018 dicamba drift damage.  Reports 1.1 million acres of soybeans damaged, and 605 total complaints across all crops.  FULL TEXT

McDuffie et al., 2001

Helen H. McDuffie, Punam Pahwa, John R. McLaughlin, John J. Spinelli, Shirley Fincham, James A. Dosman, Diane Robson, Leo F. Skinnider and Norman W. Choi, “Non-Hodgkin’s Lymphoma and Specific Pesticide Exposures in Men: Cross-Canada Study of Pesticides and Health,” Cancer Epidemiology, Biomarkers, & Prevention, 2001, 10.

ABSTRACT:

Our objective in the study was to investigate the putative associations of specific pesticides with non-Hodgkin’s Lymphoma [NHL; International Classification of Diseases, version 9 (ICD-9) 200, 202]. We conducted a Canadian multicenter population-based incident, case (n = 517)-control (n = 1506) study among men in a diversity of occupations using an initial postal questionnaire followed by a telephone interview for those reporting pesticide exposure of 10 h/year or more, and a 15% random sample of the remainder. Adjusted odds ratios (ORs) were computed using conditional logistic regression stratified by the matching variables of age and province of residence, and subsequently adjusted for statistically significant medical variables (history of measles, mumps, cancer, allergy desensitization treatment, and a positive history of cancer in first-degree relatives). We found that among major chemical classes of herbicides, the risk of NHL was statistically significantly increased by exposure to phenoxyherbicides [OR, 1.38; 95% confidence interval (CI), 1.06–1.81] and to dicamba (OR, 1.88; 95% CI, 1.32–2.68). Exposure to carbamate (OR, 1.92; 95% CI, 1.22–3.04) and to organophosphorus insecticides (OR, 1.73; 95% CI, 1.27–2.36), amide fungicides, and the fumigant carbon tetrachloride (OR, 2.42; 95% CI, 1.19–5.14) statistically significantly increased risk. Among individual compounds, in multivariate analyses, the risk of NHL was statistically significantly increased by exposure to the herbicides 2,4-dichlorophenoxyacetic acid (2,4-D; OR, 1.32; 95% CI, 1.01–1.73), mecoprop (OR, 2.33; 95% CI, 1.58–3.44), and dicamba (OR, 1.68; 95% CI, 1.00–2.81); to the insecticides malathion (OR, 1.83; 95% CI, 1.31–2.55), 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT), carbaryl (OR, 2.11; 95% CI, 1.21–3.69), aldrin, and lindane; and to the fungicides captan and sulfur compounds. In additional multivariate models, which included exposure to other major chemical classes or individual pesticides, personal antecedent cancer, a history of cancer among first-degree relatives, and exposure to mixtures containing dicamba (OR, 1.96; 95% CI, 1.40–2.75) or to mecoprop (OR, 2.22; 95% CI, 1.49–3.29) and to aldrin (OR, 3.42; 95% CI, 1.18–9.95) were significant independent predictors of an increased risk for NHL, whereas a personal history of measles and of allergy desensitization treatments lowered the risk. We concluded that NHL was associated with specific pesticides after adjustment for other independent predictors. FULL TEXT

Lerro et al., 2017

Catherine C. Lerro, Laura E. Beane Freeman, Lützen Portengen, Daehee Kang, Kyoungho Lee, Aaron Blair, Charles F. Lynch, Berit Bakke, Anneclaire J. De Roos, and Roel C.H. Vermeulen, “A longitudinal study of atrazine and 2,4-D exposure and oxidative stress markers among Iowa corn farmers,” Environmental and Molecular Mutagenesis, 2017, 58, DOI: 10.1002/em.22069

ABSTRACT:

Reactive oxygen species, potentially formed through environmental exposures, can overwhelm an organism’s antioxidant capabilities resulting in oxidative stress. Long-term oxidative stress is linked with chronic diseases. Pesticide exposures have been shown to cause oxidative stress in vivo. We utilized a longitudinal study of corn farmers and non-farming controls in Iowa to examine the impact of exposure to the widely used herbicides atrazine and 2,4-dichlorophenoxyacetic acid (2,4-D) on markers of oxidative stress. 225 urine samples were collected during five agricultural time periods (pre-planting, planting, growing, harvest, off-season) for 30 farmers who applied pesticides occupationally and 10 controls who did not; all were non-smoking men ages 40–60. Atrazine mercapturate (atrazine metabolite), 2,4-D, and oxidative stress markers (malondialdehyde [MDA], 8-hydroxy-2′-deoxyguanosine [8-OHdG], and 8-isoprostaglandin-F [8-isoPGF]) were measured in urine. We calculated β estimates and 95% confidence intervals (95%CI) for each pesticide-oxidative stress marker combination using multivariate linear mixed-effect models for repeated measures. Farmers had higher urinary atrazine mercapturate and 2,4-D levels compared to controls. In regression models, after natural log transformation, 2,4-D was associated with elevated levels of 8-OHdG (β=0.066, 95%CI=0.008–0.124) and 8-isoPGF (β=0.088, 95%CI=0.004–0.172). 2,4-D may be associated with oxidative stress because of modest increases in 8-OHdG, a marker of oxidative DNA damage, and 8-isoPGF, a product of lipoprotein peroxidation, with recent 2,4-D exposure. Future studies should investigate the role of 2,4-D-induced oxidative stress in the pathogenesis of human diseases.  FULL TEXT

Weichenthal et al., 2010

Scott Weichenthal, Connie Moase, and Peter Chan, “A Review of Pesticide Exposure and Cancer Incidence in the Agricultural Health Study Cohort,” Environmental Health Perspectives, 118, DOI: 10.1289/ehp.0901731

ABSTRACT:

OBJECTIVE: We reviewed epidemiologic evidence related to occupational pesticide exposures and cancer incidence in the Agricultural Health Study (AHS) cohort.

DATA SOURCES: Studies were identified from the AHS publication list available at http://aghealth.nci.nih.gov as well as through a Medline/PubMed database search in March 2009. We also examined citation lists. Findings related to lifetime-days and/or intensity-weighted lifetime-days of pesticide use are the primary focus of this review, because these measures allow for the evaluation of potential exposure–response relationships.

DATA SYNTHESIS: We reviewed 28 studies; most of the 32 pesticides examined were not strongly associated with cancer incidence in pesticide applicators. Increased rate ratios (or odds ratios) and positive exposure–response patterns were reported for 12 pesticides currently registered in Canada and/or the United States (alachlor, aldicarb, carbaryl, chlorpyrifos, diazinon, dicamba, S-ethyl-N,N-dipropylthiocarbamate, imazethapyr, metolachlor, pendimethalin, permethrin, trifluralin). However, estimates of association for specific cancers were often imprecise because of small numbers of exposed cases, and clear monotonic exposure–response patterns were not always apparent. Exposure misclassification is also a concern in the AHS and may limit the analysis of exposure–response patterns. Epidemiologic evidence outside the AHS remains limited with respect to most of the observed associations, but animal toxicity data support the biological plausibility of relationships observed for alachlor, carbaryl, metolachlor, pendimethalin, permethrin, and trifluralin.

CONCLUSIONS: Continued follow-up is needed to clarify associations reported to date. In particular, further evaluation of registered pesticides is warranted.

FULL TEXT

Back To Top