skip to Main Content

Bibliography Tag: full text available

Haas et al., 2015

Haas, D. M., Parker, C. B., Wing, D. A., Parry, S., Grobman, W. A., Mercer, B. M., Simhan, H. N., Hoffman, M. K., Silver, R. M., Wadhwa, P., Iams, J. D., Koch, M. A., Caritis, S. N., Wapner, R. J., Esplin, M. S., Elovitz, M. A., Foroud, T., Peaceman, A. M., Saade, G. R., Willinger, M., Reddy, U. M., & NuMo, M. b study; “A description of the methods of the Nulliparous Pregnancy Outcomes Study: monitoring mothers-to-be (nuMoM2b);” American Journal of Obstetrics & Gynecology, 2015, 212(4), 539 e531-539 e524; DOI: 10.1016/j.ajog.2015.01.019.

ABSTRACT:

OBJECTIVE: The primary aim of the “Nulliparous Pregnancy Outcomes Study: monitoring mothers-to-be” is to determine maternal characteristics, which include genetic, physiologic response to pregnancy, and environmental factors that predict adverse pregnancy outcomes.

STUDY DESIGN: Nulliparous women in the first trimester of pregnancy were recruited into an observational cohort study. Participants were seen at 3 study visits during pregnancy and again at delivery. We collected data from in-clinic interviews, take-home surveys, clinical measurements, ultrasound studies, and chart abstractions. Maternal biospecimens (serum, plasma, urine, cervicovaginal fluid) at antepartum study visits and delivery specimens (placenta, umbilical cord, cord blood) were collected, processed, and stored. The primary outcome of the study was defined as pregnancy ending at <37+0 weeks’ gestation. Key study hypotheses involve adverse pregnancy outcomes of spontaneous preterm birth, preeclampsia, and fetal growth restriction.

RESULTS: We recruited 10,037 women to the study. Basic characteristics of the cohort at screening are reported.

CONCLUSION: The “Nulliparous Pregnancy Outcomes Study: monitoring mothers-to-be” cohort study methods and procedures can help investigators when they plan future projects.

FULL TEXT

Hantsoo et al., 2019

Hantsoo, L., Jasarevic, E., Criniti, S., McGeehan, B., Tanes, C., Sammel, M. D., Elovitz, M. A., Compher, C., Wu, G., & Epperson, C. N.; “Childhood adversity impact on gut microbiota and inflammatory response to stress during pregnancy;” Brain, Behavior, and Immunity, 2019, 75, 240-250; DOI: 10.1016/j.bbi.2018.11.005.

ABSTRACT:

BACKGROUND: Adverse childhood experiences (ACEs), such as abuse or chronic stress, program an exaggerated adult inflammatory response to stress. Emerging rodent research suggests that the gut microbiome may be a key mediator in the association between early life stress and dysregulated glucocorticoid-immune response. However, ACE impact on inflammatory response to stress, or on the gut microbiome, have not been studied in human pregnancy, when inflammation increases risk of poor outcomes. The aim of this study was to assess the relationships among ACE, the gut microbiome, and cytokine response to stress in pregnant women.

METHODS: Physically and psychiatrically healthy adult pregnant women completed the Adverse Childhood Experiences Questionnaire (ACE-Q) and gave a single stool sample between 20 and 26weeks gestation. Stool DNA was isolated and 16S sequencing was performed. Three 24-hour food recalls were administered to assess dietary nutrient intake. A subset of women completed the Trier Social Stress Test (TSST) at 22-34weeks gestation; plasma interleukin-6 (IL-6), interleukin-1beta (IL-1beta), high sensitivity C-reactive protein (hsCRP), tumor necrosis factor alpha (TNF-alpha), and cortisol were measured at four timepoints pre and post stressor, and area under the curve (AUC) was calculated.

RESULTS: Forty-eight women completed the ACE-Q and provided stool; 19 women completed the TSST. Women reporting 2 or more ACEs (high ACE) had greater differential abundance of gut Prevotella than low ACE participants (q=5.7×10^-13). Abundance of several gut taxa were significantly associated with cortisol, IL-6, TNF-alpha and CRP AUCs regardless of ACE status. IL-6 response to stress was buffered among high ACE women with high intake of docosahexaenoic acid (DHA) (p=0.03) and eicosapentaenoic acid (EPA) (p=0.05).

DISCUSSION: Our findings suggest that multiple childhood adversities are associated with changes in gut microbiota composition during pregnancy, and such changes may contribute to altered inflammatory and glucocorticoid response to stress. While preliminary, this is the first study to demonstrate an association between gut microbiota and acute glucocorticoid-immune response to stress in a clinical sample. Finally, exploratory analyses suggested that high ACE women with high dietary intake of omega-3 polyunsaturated fatty acids (PUFAs) had a dampened inflammatory response to acute stress, suggesting potentially protective effects of omega-3s in this high-risk population. Given the adverse effects of inflammation on pregnancy and the developing fetus, mechanisms by which childhood adversity influence the gut-brain axis and potential protective factors such as diet should be further explored.

FULL TEXT

Scholze et al., 2020

Scholze, M., Taxvig, C., Kortenkamp, A., Boberg, J., Christiansen, S., Svingen, T., Lauschke, K., Frandsen, H., Ermler, S., Hermann, S. S., Pedersen, M., Lykkeberg, A. K., Axelstad, M., & Vinggaard, A. M.; “Quantitative in Vitro to in Vivo Extrapolation (QIVIVE) for Predicting Reduced Anogenital Distance Produced by Anti-Androgenic Pesticides in a Rodent Model for Male Reproductive Disorders;” Environ Health Perspect, 2020, 128(11), 117005; DOI: 10.1289/EHP6774.

ABSTRACT:

BACKGROUND: Many pesticides can antagonize the androgen receptor (AR) or inhibit androgen synthesis in vitro but their potential to cause reproductive toxicity related to disruption of androgen action during fetal life is difficult to predict. Currently no approaches for using in vitro data to anticipate such in vivo effects exist. Prioritization schemes that limit unnecessary in vivo testing are urgently needed.

OBJECTIVES: The aim was to develop a quantitative in vitro to in vivo extrapolation (QIVIVE) approach for predicting in vivo anti-androgenicity arising from gestational exposures and manifesting as a shortened anogenital distance (AGD) in male rats.

METHODS: We built a physiologically based pharmacokinetic (PBK) model to simulate concentrations of chemicals in the fetus resulting from maternal dosing. The predicted fetal levels were compared with analytically determined concentrations, and these were judged against in vitro active concentrations for AR antagonism and androgen synthesis suppression.

RESULTS: We first evaluated our model by using in vitro and in vivo anti-androgenic data for procymidone, vinclozolin, and linuron. Our PBK model described the measured fetal concentrations of parent compounds and metabolites quite accurately (within a factor of five). We applied the model to nine current-use pesticides, all with in vitro evidence for anti-androgenicity but missing in vivo data. Seven pesticides (fludioxonil, cyprodinil, dimethomorph, imazalil, quinoxyfen, fenhexamid, o-phenylphenol) were predicted to produce a shortened AGD in male pups, whereas two (lambda-cyhalothrin, pyrimethanil) were anticipated to be inactive. We tested these expectations for fludioxonil, cyprodinil, and dimethomorph and observed shortened AGD in male pups after gestational exposure. The measured fetal concentrations agreed well with PBK-modeled predictions.

DISCUSSION: Our QIVIVE model newly identified fludioxonil, cyprodinil, and dimethomorph as in vivo anti-androgens. With the examples investigated, our approach shows great promise for predicting in vivo anti-androgenicity (i.e., AGD shortening) for chemicals with in vitro activity and for minimizing unnecessary in vivo testing.  FULL TEXT

Pellizzari et al., 2019

Pellizzari, E. D., Woodruff, T. J., Boyles, R. R., Kannan, K., Beamer, P. I., Buckley, J. P., Wang, A., Zhu, Y., & Bennett, D. H.; “Identifying and Prioritizing Chemicals with Uncertain Burden of Exposure: Opportunities for Biomonitoring and Health-Related Research;” Environmental Health Perspectives, 2019, 127(12), 126001; DOI: 10.1289/EHP5133.

ABSTRACT:

BACKGROUND: The National Institutes of Health’s Environmental influences on Child Health Outcomes (ECHO) initiative aims to understand the impact of environmental factors on childhood disease. Over 40,000 chemicals are approved for commercial use. The challenge is to prioritize chemicals for biomonitoring that may present health risk concerns.

OBJECTIVES: Our aim was to prioritize chemicals that may elicit child health effects of interest to ECHO but that have not been biomonitored nationwide and to identify gaps needing additional research.

METHODS: We searched databases and the literature for chemicals in environmental media and in consumer products that were potentially toxic. We selected chemicals that were not measured in the National Health and Nutrition Examination Survey. From over 700 chemicals, we chose 155 chemicals and created eight chemical panels. For each chemical, we compiled biomonitoring and toxicity data, U.S. Environmental Protection Agency exposure predictions, and annual production usage. We also applied predictive modeling to estimate toxicity. Using these data, we recommended chemicals either for biomonitoring, to be deferred pending additional data, or as low priority for biomonitoring.

RESULTS: For the 155 chemicals, 97 were measured in food or water, 67 in air or house dust, and 52 in biospecimens. We found in vivo endocrine, developmental, reproductive, and neurotoxic effects for 61, 74, 47, and 32 chemicals, respectively. Eighty-six had data from high-throughput in vitro assays. Positive results for endocrine, developmental, neurotoxicity, and obesity were observed for 32, 11, 35, and 60 chemicals, respectively. Predictive modeling results suggested 90% are toxicants. Biomarkers were reported for 76 chemicals. Thirty-six were recommended for biomonitoring, 108 deferred pending additional research, and 11 as low priority for biomonitoring.

DISCUSSION: The 108 deferred chemicals included those lacking biomonitoring methods or toxicity data, representing an opportunity for future research. Our evaluation was, in general, limited by the large number of unmeasured or untested chemicals.  FULL TEXT

Buckley et al., 2020

Buckley, J. P., Barrett, E. S., Beamer, P. I., Bennett, D. H., Bloom, M. S., Fennell, T. R., Fry, R. C., Funk, W. E., Hamra, G. B., Hecht, S. S., Kannan, K., Iyer, R., Karagas, M. R., Lyall, K., Parsons, P. J., Pellizzari, E. D., Signes-Pastor, A. J., Starling, A. P., Wang, A., Watkins, D. J., Zhang, M., Woodruff, T. J., & program collaborators for, Echo; “Opportunities for evaluating chemical exposures and child health in the United States: the Environmental influences on Child Health Outcomes (ECHO) Program;” Journal of exposure science & environmental epidemiology, 2020, 30(3), 397-419; DOI: 10.1038/s41370-020-0211-9.

ABSTRACT:

The Environmental Influences on Child Health Outcomes (ECHO) Program will evaluate environmental factors affecting children’s health (perinatal, neurodevelopmental, obesity, respiratory, and positive health outcomes) by pooling cohorts composed of >50,000 children in the largest US study of its kind. Our objective was to identify opportunities for studying chemicals and child health using existing or future ECHO chemical exposure data. We described chemical-related information collected by ECHO cohorts and reviewed ECHO-relevant literature on exposure routes, sources, and environmental and human monitoring. Fifty-six ECHO cohorts have existing or planned chemical biomonitoring data for mothers or children. Environmental phenols/parabens, phthalates, metals/metalloids, and tobacco biomarkers are each being measured by ≥15 cohorts, predominantly during pregnancy and childhood, indicating ample opportunities to study child health outcomes. Cohorts are collecting questionnaire data on multiple exposure sources and conducting environmental monitoring including air, dust, and water sample collection that could be used for exposure assessment studies. To supplement existing chemical data, we recommend biomonitoring of emerging chemicals, nontargeted analysis to identify novel chemicals, and expanded measurement of chemicals in alternative biological matrices and dust samples. ECHO’s rich data and samples represent an unprecedented opportunity to accelerate environmental chemical research to improve the health of US children. FULL TEXT

Franke et al., 2020

Franke, A. A., Li, X., & Lai, J. F.; “Analysis of glyphosate, aminomethylphosphonic acid, and glufosinate from human urine by HRAM LC-MS;” Analytical and Bioanalytical Chemistry, 2020; DOI: 10.1007/s00216-020-02966-1.

ABSTRACT:

Aminomethylphosphonic acid (AMPA) is the main metabolite of glyphosate (GLYP) and phosphonic acids in detergents. GLYP is a synthetic herbicide frequently used worldwide alone or together with its analog glufosinate (GLUF). The general public can be exposed to these potentially harmful chemicals; thus, sensitive methods to monitor them in humans are urgently required to evaluate health risks. We attempted to simultaneously detect GLYP, AMPA, and GLUF in human urine by high-resolution accurate-mass liquid chromatography mass spectrometry (HRAM LC-MS) before and after derivatization with 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl) or 1-methylimidazole-sulfonyl chloride (ImS-Cl) with several urine pre-treatment and solid phase extraction (SPE) steps. Fmoc-Cl derivatization achieved the best combination of method sensitivity (limit of detection; LOD) and accuracy for all compounds compared to underivatized urine or ImS-Cl-derivatized urine. Before derivatization, the best steps for GLYP involved 0.4 mM ethylenediaminetetraacetic acid (EDTA) pre-treatment followed by SPE pre-cleanup (LOD 37 pg/mL), for AMPA involved no EDTA pre-treatment and no SPE pre-cleanup (LOD 20 pg/mL) or 0.2-0.4 mM EDTA pre-treatment with no SPE pre-cleanup (LOD 19-21 pg/mL), and for GLUF involved 0.4 mM EDTA pre-treatment and no SPE pre-cleanup (LOD 7 pg/mL). However, for these methods, accuracy was sufficient only for AMPA (101-105%), while being modest for GLYP (61%) and GLUF (63%). Different EDTA and SPE treatments prior to Fmoc-Cl derivatization resulted in high sensitivity for all analytes but satisfactory accuracy only for AMPA. Thus, we conclude that our HRAM LC-MS method is suited for urinary AMPA analysis in cross-sectional studies. FULL TEXT

Connolly et al., 2020

Connolly, A., Coggins, M. A., & Koch, H. M.; “Human Biomonitoring of Glyphosate Exposures: State-of-the-Art and Future Research Challenges;” Toxics, 2020, 8(3); DOI: 10.3390/toxics8030060. https://www.ncbi.nlm.nih.gov/pubmed/32824707.

ABSTRACT:

Glyphosate continues to attract controversial debate following the International Agency for Research on Cancer carcinogenicity classification in 2015. Despite its ubiquitous presence in our environment, there remains a dearth of data on human exposure to both glyphosate and its main biodegradation product aminomethylphosphonic (AMPA). Herein, we reviewed and compared results from 21 studies that use human biomonitoring (HBM) to measure urinary glyphosate and AMPA. Elucidation of the level and range of exposure was complicated by differences in sampling strategy, analytical methods, and data presentation. Exposure data is required to enable a more robust regulatory risk assessment, and these studies included higher occupational exposures, environmental exposures, and vulnerable groups such as children. There was also considerable uncertainty regarding the absorption and excretion pattern of glyphosate and AMPA in humans. This information is required to back-calculate exposure doses from urinary levels and thus, compared with health-based guidance values. Back-calculations based on animal-derived excretion rates suggested that there were no health concerns in relation to glyphosate exposure (when compared with EFSA acceptable daily intake (ADI)). However, recent human metabolism data has reported as low as a 1% urinary excretion rate of glyphosate. Human exposures extrapolated from urinary glyphosate concentrations found that upper-bound levels may be much closer to the ADI than previously reported. FULL TEXT

Pierce et al., 2020

Pierce, J. S., Roberts, B., Kougias, D. G., Comerford, C. E., Riordan, A. S., Keeton, K. A., Reamer, H. A., Jacobs, N. F. B., & Lotter, J. T.; “Pilot study evaluating inhalation and dermal glyphosate exposure resulting from simulated heavy residential consumer application of Roundup((R));” Inhalation Toxicology, 2020, 1-11; DOI: 10.1080/08958378.2020.1814457.

ABSTRACT:

OBJECTIVES: The purpose of this study was to evaluate the individual contributions of inhalation and dermal exposures to urinary glyphosate levels following the heavy residential consumer application of a glyphosate-containing herbicide.

METHODS: A pilot study was conducted in which each participant mixed and continuously spray-applied 16.3 gallons of a 0.96% glyphosate-containing solution for 100 min using a backpack sprayer. Twelve participants were divided evenly into two exposure groups, one equipped to assess dermal exposure and the other, inhalation exposure. Personal air samples (n = 12) and dermal patch samples (n = 24) were collected on the inhalation group participants and analyzed for glyphosate using HPLC-UV. Serial urine samples collected 30-min prior to application and 3-, 6-, 12-, 24-hr (inhalation and dermal groups) and 36-hr (dermal group only) post-application were analyzed for glyphosate and glyphosate’s primary metabolite (AMPA) using HPLC-MS/MS.

RESULTS: The mean airborne glyphosate concentration was 0.0047 mg/m(3), and the mean concentrations of glyphosate for each applicator’s four patch samples ranged from 0.04 microg/mm(2) to 0.25 microg/mm(2). In general, urinary glyphosate, AMPA, and total effective glyphosate levels were higher in the dermal exposure group than the inhalation exposure group, peaked within 6-hr following application, and were statistically indistinguishable from background at 24-hr post-application.

CONCLUSIONS: This is the first study to characterize the absorption and biological fate of glyphosate in residential consumer applicators following heavy application. The results of this pilot study are consistent with previous studies that have shown that glyphosate is rapidly eliminated from the body, typically within 24 hr following application. FULL TEXT

Reeves et al., 2019

Reeves, W. R., McGuire, M. K., Stokes, M., & Vicini, J. L.; “Assessing the Safety of Pesticides in Food: How Current Regulations Protect Human Health;” Advances in Nutrition, 2019, 10(1), 80-88; DOI: 10.1093/advances/nmy061.

ABSTRACT:

Understanding the magnitude and impact of dietary pesticide exposures is a concern for some consumers. However, the ability of consumers to obtain and understand state-of-the-science information about how pesticides are regulated and how dietary exposure limits are set can be limited by the complicated nature of the regulations coupled with an abundance of sources seeking to cast doubt on the reliability of those regulations. Indeed, these regulations are sometimes not well understood within health care professions. As such, the objective of this review is to provide a historical perspective as to how modern pesticides were developed, current trends in pesticide use and regulation, and measures taken to reduce the risk of pesticide use to the consumer. Throughout the review, we provide specific examples for some of the concepts as they apply to glyphosate-a pesticide commonly used by both farmers and consumers. In addition, we describe current efforts to monitor pesticide use. We are confident that this succinct, yet thorough, review of this topic will be of interest to myriad researchers, public health experts, and health practitioners as they help communicate information about making healthful and sustainable food choices to the public. FULL TEXT

Berkowitz et al., 2004

Berkowitz, G. S., Wetmur, J. G., Birman-Deych, E., Obel, J., Lapinski, R. H., Godbold, J. H., Holzman, I. R., & Wolff, M. S.; “In utero pesticide exposure, maternal paraoxonase activity, and head circumference;” Environmental Health Perspectives, 2004, 112(3), 388-391; DOI: 10.1289/ehp.6414.

ABSTRACT:

Although the use of pesticides in inner-city homes of the United States is of considerable magnitude, little is known about the potentially adverse health effects of such exposure. Recent animal data suggest that exposure to pesticides during pregnancy and early life may impair growth and neurodevelopment in the offspring. To investigate the relationship among prenatal pesticide exposure, paraoxonase (PON1) polymorphisms and enzyme activity, and infant growth and neurodevelopment, we are conducting a prospective, multiethnic cohort study of mothers and infants delivered at Mount Sinai Hospital in New York City. In this report we evaluate the effects of pesticide exposure on birth weight, length, head circumference, and gestational age among 404 births between May 1998 and May 2002. Pesticide exposure was assessed by a prenatal questionnaire administered to the mothers during the early third trimester as well as by analysis of maternal urinary pentachlorophenol levels and maternal metabolites of chlorpyrifos and pyrethroids. Neither the questionnaire data nor the pesticide metabolite levels were associated with any of the fetal growth indices or gestational age. However, when the level of maternal PON1 activity was taken into account, maternal levels of chlorpyrifos above the limit of detection coupled with low maternal PON1 activity were associated with a significant but small reduction in head circumference. In addition, maternal PON1 levels alone, but not PON1 genetic polymorphisms, were associated with reduced head size. Because small head size has been found to be predictive of subsequent cognitive ability, these data suggest that chlorpyrifos may have a detrimental effect on fetal neurodevelopment among mothers who exhibit low PON1 activity. FULL TEXT

Back To Top