skip to Main Content

Bibliography Tag: full text available

Alavanja et al., 2004

Alavanja, M. C., Hoppin, J. A., & Kamel, F.; “Health effects of chronic pesticide exposure: cancer and neurotoxicity;” Annual review of public health, 2004, 25, 155-197; DOI: 10.1146/annurev.publhealth.25.101802.123020.

ABSTRACT:

Pesticides are widely used in agricultural and other settings, resulting in continuing human exposure. Epidemiologic studies indicate that, despite premarket animal testing, current exposures are associated with risks to human health. In this review, we describe the routes of pesticide exposures occurring today, and summarize and evaluate the epidemiologic studies of pesticide-related carcinogenicity and neurotoxicity in adults. Better understanding of the patterns of exposure, the underlying variability within the human population, and the links between the animal toxicology data and human health effects will improve the evaluation of the risks to human health posed by pesticides. Improving epidemiology studies and integrating this information with toxicology data will allow the human health risks of pesticide exposure to be more accurately judged by public health policy makers. FULL TEXT

Blair et al., 1985

Blair, A., Malker, H., Cantor, K. P., Burmeister, L., & Wiklund, K.; “Cancer among farmers. A review;” Scandinavian Journal of Work, Environment, & Health, 1985, 11(6), 397-407; DOI: 10.5271/sjweh.2208.

ABSTRACT:

During the performance of routine tasks farmers may come in contact with a variety of substances, including pesticides, solvents, oils and fuels, dusts, paints, welding fumes, zoonotic viruses, microbes, and fungi. Because some of these substances are known or suspected carcinogens, the epidemiologic literature regarding cancer risks concerning farmers has been reviewed. Farmers had consistent deficits for cancers of the colon, rectum, liver, and nose. The deficits for cancer of the lung and bladder were particularly striking, presumably due to less frequent use of tobacco among farmers than among people in many other occupational groups. Malignancies frequently showing excesses among farmers included Hodgkin’s disease, leukemia, non-Hodgkin’s lymphoma, multiple myeloma, and cancers of the lip, stomach, prostate, skin (nonmelanotic), brain, and connective tissues. The etiologic factors that may contribute to these excesses in the agricultural environment have not been identified. Detailed, analytic epidemiologic studies that incorporate environmental and biochemical monitoring are needed to clarify these associations. FULL TEXT

Blair and Zahm, 1993

Blair, A., & Zahm, S. H.; “Patterns of pesticide use among farmers: implications for epidemiologic research;” Epidemiology, 1993, 4(1), 55-62; DOI: 10.1097/00001648-199301000-00011.

ABSTRACT:

Epidemiologic studies of farmers have linked pesticides with certain cancers. Information on exposures from many of these studies was obtained by interview of farmers or their next-of-kin. The reliability and validity of data on pesticide use obtained by recall, often years after the event, have been questioned. Pesticide use, however, is an integral component in most agricultural operations, and the farmers’ knowledge and recall of chemicals used may be better than for many other occupations. Contrary to general belief, many farmers typically use only a few pesticides during their lifetimes and make only a few applications per year. Data from U.S. Department of Agriculture surveys indicate that herbicides are applied to wheat, corn, soybeans, and cotton and that application of insecticides to corn averages two or fewer times per year. In epidemiologic studies at the National Cancer Institute, the proportion of farmers ever reporting lifetime use of five or more different chemicals was 7% for insecticides and 20% for herbicides. Surrogate respondents have often been used in epidemiologic studies of cancer; they are able to recall pesticide use with less detail than the farmers themselves. The pesticides reported by surrogates were the same as reported by subjects themselves, but with less frequency. Comparison of reporting by cases and controls provided no evidence of case-response (differential) bias; thus, inaccurate recall of pesticide use by subjects or surrogates would tend to diminish risk estimates and dilute exposure-response gradients. FULL TEXT

Blair et al., 1992

Blair, A., Zahm, S. H., Pearce, N. E., Heineman, E. F., & Fraumeni, J. F., Jr.; “Clues to cancer etiology from studies of farmers;” Scandinavian Journal of Work, Environment, & Health, 1992, 18(4), 209-215; DOI: 10.5271/sjweh.1578.

ABSTRACT:

This article summarizes cancer risks among farmers to clarify the magnitude of the problem and to suggest directions for future research. Significant excesses occurred for Hodgkin’s disease, multiple myeloma, leukemia, skin melanomas, and cancers of the lip, stomach, and prostate. Nonsignificant increases in risk were also noted for non-Hodgkin’s lymphoma and cancers of connective tissue and brain. These excesses occurred against a background of substantial deficits among farmers for total mortality and mortality from many specific diseases. The tumors vary in frequency, histology, and prognosis and do not fall into any obvious grouping. Two commonalities may be important. Several of the tumors excessive among farmers appear to be rising in the general population and are excessive among patients with naturally occurring or medically induced immunodeficiencies. Therefore epidemiologic studies on specific exposures among farmers may help explain the rising trend of certain cancers in developed countries and provide clues to mechanisms of action for environmental carcinogens. FULL TEXT

 

Potera, 2015

Potera, C.; “Tracking organophosphates: new method for assessing long-term dietary exposures;” Environmental Health Perspectives, 2015, 123(5), A135; DOI: 10.1289/ehp.123-A135.

ABSTRACT:

Not Available

FULL TEXT

Riter et al., 2020


Riter, L. S., Sall, E. D., Pai, N., Beachum, C. E., & Orr, T. B.; “Quantifying Dicamba Volatility under Field Conditions: Part I, Methodology;” Journal of Agricultural and Food Chemistry, 2020, 68(8), 2277-2285; DOI: 10.1021/acs.jafc.9b06451.

ABSTRACT:

Quantitative assessment of the volatility of field applied herbicides requires orchestrated sampling logistics, robust analytical methods, and sophisticated modeling techniques. This manuscript describes a comprehensive system developed to measure dicamba volatility in an agricultural setting. Details about study design, sample collection, analytical chemistry, and flux modeling are described. A key component of the system is the interlaboratory validation of an analytical method for trace level detection (limit of quantitation of 1.0 ng/PUF) of dicamba in polyurethane foam (PUF) air samplers. Validation of field sampling and flux methodologies was conducted in a field trial that demonstrated agreement between predicted and directly measured dicamba air concentrations at a series of off-target locations. This validated system was applied to a field case study on two plots to demonstrate the utility of these methods under typical agricultural conditions. This case study resulted in a time-varying volatile flux profile, which showed that less than 0.2 +/- 0.05% of the applied dicamba was volatilized over the 3-day sampling period. FULL TEXT

Macfarlane et al., 2013

Macfarlane, E., Carey, R., Keegel, T., El-Zaemay, S., & Fritschi, L.; “Dermal exposure associated with occupational end use of pesticides and the role of protective measures;” Safety and Health at Work, 2013, 4(3), 136-141; DOI: 10.1016/j.shaw.2013.07.004.

ABSTRACT:

BACKGROUND: Occupational end users of pesticides may experience bodily absorption of the pesticide products they use, risking possible health effects. The purpose of this paper is to provide a guide for researchers, practitioners, and policy makers working in the field of agricultural health or other areas where occupational end use of pesticides and exposure issues are of interest.

METHODS: This paper characterizes the health effects of pesticide exposure, jobs associated with pesticide use, pesticide-related tasks, absorption of pesticides through the skin, and the use of personal protective equipment (PPE) for reducing exposure.

CONCLUSIONS: Although international and national efforts to reduce pesticide exposure through regulatory means should continue, it is difficult in the agricultural sector to implement engineering or system controls. It is clear that use of PPE does reduce dermal pesticide exposure but compliance among the majority of occupationally exposed pesticide end users appears to be poor. More research is needed on higher-order controls to reduce pesticide exposure and to understand the reasons for poor compliance with PPE and identify effective training methods.

FULL TEXT

Schlappi et al., 2020

Schlappi, D., Kettler, N., Straub, L., Glauser, G., & Neumann, P.; “Long-term effects of neonicotinoid insecticides on ants;” Communications Biology, 2020, 3(1), 335; DOI: 10.1038/s42003-020-1066-2.

ABSTRACT:

The widespread prophylactic usage of neonicotinoid insecticides has a clear impact on non-target organisms. However, the possible effects of long-term exposure on soil-dwelling organisms are still poorly understood especially for social insects with long-living queens. Here, we show that effects of chronic exposure to the neonicotinoid thiamethoxam on black garden ant colonies, Lasius niger, become visible before the second overwintering. Queens and workers differed in the residue-ratio of thiamethoxam to its metabolite clothianidin, suggesting that queens may have a superior detoxification system. Even though thiamethoxam did not affect queen mortality, neonicotinoid-exposed colonies showed a reduced number of workers and larvae indicating a trade-off between detoxification and fertility. Since colony size is a key for fitness, our data suggest long-term impacts of neonicotinoids on these organisms. This should be accounted for in future environmental and ecological risk assessments of neonicotinoid applications to prevent irreparable damages to ecosystems. FULL TEXT

Pisa et al., 2015

Pisa, L. W., Amaral-Rogers, V., Belzunces, L. P., Bonmatin, J. M., Downs, C. A., Goulson, D., Kreutzweiser, D. P., Krupke, C., Liess, M., McField, M., Morrissey, C. A., Noome, D. A., Settele, J., Simon-Delso, N., Stark, J. D., Van der Sluijs, J. P., Van Dyck, H., & Wiemers, M.; “Effects of neonicotinoids and fipronil on non-target invertebrates;” Environmental Science and Pollution Research International, 2015, 22(1), 68-102; DOI: 10.1007/s11356-014-3471-x.

ABSTRACT:

We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section “other invertebrates” review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. There is a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large-scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats. FULL TEXT

Levine et al., 2017

Levine, H., Jorgensen, N., Martino-Andrade, A., Mendiola, J., Weksler-Derri, D., Mindlis, I., Pinotti, R., & Swan, S. H.; “Temporal trends in sperm count: a systematic review and meta-regression analysis;” Human Reproduction Update, 2017, 23(6), 646-659; DOI: 10.1093/humupd/dmx022.

ABSTRACT:

BACKGROUND: Reported declines in sperm counts remain controversial today and recent trends are unknown. A definitive meta-analysis is critical given the predictive value of sperm count for fertility, morbidity and mortality.

OBJECTIVE AND RATIONALE: To provide a systematic review and meta-regression analysis of recent trends in sperm counts as measured by sperm concentration (SC) and total sperm count (TSC), and their modification by fertility and geographic group.

SEARCH METHODS: PubMed/MEDLINE and EMBASE were searched for English language studies of human SC published in 1981-2013. Following a predefined protocol 7518 abstracts were screened and 2510 full articles reporting primary data on SC were reviewed. A total of 244 estimates of SC and TSC from 185 studies of 42 935 men who provided semen samples in 1973-2011 were extracted for meta-regression analysis, as well as information on years of sample collection and covariates [fertility group (‘Unselected by fertility’ versus ‘Fertile’), geographic group (‘Western’, including North America, Europe Australia and New Zealand versus ‘Other’, including South America, Asia and Africa), age, ejaculation abstinence time, semen collection method, method of measuring SC and semen volume, exclusion criteria and indicators of completeness of covariate data]. The slopes of SC and TSC were estimated as functions of sample collection year using both simple linear regression and weighted meta-regression models and the latter were adjusted for pre-determined covariates and modification by fertility and geographic group. Assumptions were examined using multiple sensitivity analyses and nonlinear models.

OUTCOMES: SC declined significantly between 1973 and 2011 (slope in unadjusted simple regression models -0.70 million/ml/year; 95% CI: -0.72 to -0.69; P < 0.001; slope in adjusted meta-regression models = -0.64; -1.06 to -0.22; P = 0.003). The slopes in the meta-regression model were modified by fertility (P for interaction = 0.064) and geographic group (P for interaction = 0.027). There was a significant decline in SC between 1973 and 2011 among Unselected Western (-1.38; -2.02 to -0.74; P < 0.001) and among Fertile Western (-0.68; -1.31 to -0.05; P = 0.033), while no significant trends were seen among Unselected Other and Fertile Other. Among Unselected Western studies, the mean SC declined, on average, 1.4% per year with an overall decline of 52.4% between 1973 and 2011. Trends for TSC and SC were similar, with a steep decline among Unselected Western (-5.33 million/year, -7.56 to -3.11; P < 0.001), corresponding to an average decline in mean TSC of 1.6% per year and overall decline of 59.3%. Results changed minimally in multiple sensitivity analyses, and there was no statistical support for the use of a nonlinear model. In a model restricted to data post-1995, the slope both for SC and TSC among Unselected Western was similar to that for the entire period (-2.06 million/ml, -3.38 to -0.74; P = 0.004 and -8.12 million, -13.73 to -2.51, P = 0.006, respectively).

WIDER IMPLICATIONS: This comprehensive meta-regression analysis reports a significant decline in sperm counts (as measured by SC and TSC) between 1973 and 2011, driven by a 50-60% decline among men unselected by fertility from North America, Europe, Australia and New Zealand. Because of the significant public health implications of these results, research on the causes of this continuing decline is urgently needed.

FULL TEXT

Back To Top