skip to Main Content

Bibliography Tag: glyphosate

Avila-Vazquez et al., 2018

Avila-Vazquez, M., Difilippo, F.S., Lean, B.M., Maturano, E. and Etchegoyen, A., “Environmental Exposure to Glyphosate and Reproductive Health Impacts in Agricultural Population of Argentina,” Journal of Environmental Protection, 2018, 9, DOI: 10.4236/jep.2018.93016.

ABSTRACT:

Argentina annually utilizes 240,000 tones of glyphosate in industrial agriculture and a change in the profile of morbidity is perceived for physicians of agricultural areas; now reproductive disorders seem to prevail. The objective of this study is to determine concurrence of glyphosate exposure and  reproductive disorders in a typical argentine agricultural town (Monte Maíz). An ecological study was developed with an environmental analysis of pollution sources including measurements of glyphosate and other pesticides and a cross-sectional study of spontaneous abortions and congenital abnormalities prevalence. Glyphosate was detected in soil and grain dust and was found to be at an even higher concentration in the village soil than in the rural area; 650 tonnes of glyphosate are used annually in the region and manipulated inner town contaminating the soil and dust in suspension of the town creating an burden of environmental exposure to glyphosate of 79 kg per person per year. We do not find other relevant sources of pollution. The spontaneous abortion and congenital abnormalities rates are three and two times higher than the national average reported by the national health (10% vs. 3% and 3% – 4.3% vs 1.4% respectively). Our study verified high environmental exposure to glyphosate in association with increased frequencies of reproductive disorders  (spontaneous abortion and congenital abnormalities) in argentine agricultural village, but is unable to make assertions cause-effect. Further studies are required with designs for such purposes. FULL TEXT

Gillam, 2018

Carey Gillam, “Weedkiller found in granola and crackers, internal FDA emails show,” The Guardian, April 30, 2018.

SUMMARY:

A Freedom of Information Act request for internal FDA emails shows that recent testing for glyphosate residues in foods has revealed that “FDA has had trouble finding any food that does not carry traces of the pesticide.”  This is the first wide-scale quantification of herbicide residues in foods, and internal emails show that FDA scientists tested many common foods during informal testing to validate the process the agency would use to test official samples.  These samples are not “official” and would not be included in the upcoming residue report.  Some results have been above the legal threshold, such as a sample of corn where glyphosate was detected at 6.5 ppm, well over the legal limit of 5.0 ppm.  The FDA is also expanding residue testing for dicamba and 2.4-D as use of these herbicides is expected to rise in the near future with the introduction of new GE crops that are resistant to these active ingredients.  FULL TEXT

Séralini et al., 2014

Gilles-Eric Séralini, Emilie Clair, Robin Mesnage, Steeve Gress, Nicolas Defarge, Manuela Malatesta, Didier Hennequin and Joël Spiroux de Vendômois, “Republished study: long-term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize,” Environmental Sciences Europe, Bridging Science and Regulation at the Regional and European Level, 2014, 26:14. DOI: 10.1186/s12302-014-0014-5

ABSTRACT

BACKGROUND: The health effects of a Roundup-tolerant NK603 genetically modified (GM) maize(from 11% in the diet), cultivated with or without Roundup application and Roundup alone (from 0.1 ppb of the full pesticide containing glyphosate and adjuvants) in drinking water, were evaluated for 2 years in rats. This study constitutes a follow-up investigation of a 90-day feeding study conducted by Monsanto in order to obtain commercial release of this GMO, employing the same rat strain and analyzing biochemical parameters on the same number of animals per group as our investigation. Our research represents the first chronic study on these substances, in which all observations including tumors are reported chronologically. Thus, it was not designed as a carcinogenicity study. We report the major findings with 34 organs observed and 56 parameters analyzed at 11 time points for most organs.

RESULTS: Biochemical analyses confirmed very significant chronic kidney deficiencies, for all treatments and both sexes; 76% of the altered parameters were kidney-related.In treated males, liver congestions and necrosis were 2.5 to 5.5 times higher.Marked and severe nephropathies were also generally 1.3 to 2.3 times greater. In females, all treatment groups showed a two- to threefold increase in mortality,and deaths were earlier. This difference was also evident in three male groups fed with GM maize. All results were hormone- and sex-dependent, and the pathological profiles were comparable. Females developed large mammary tumors more frequently and before controls; the pituitary was the second most disabled organ; the sex hormonal balance was modified by consumption of GM maize and Roundup treatments.Males presented up to four times more large palpable tumors starting 600 days earlier than in the control group, in which only one tumor was noted. These results may be explained by not only the non-linear endocrine-disrupting effects of Roundup but also by the over expression of the EPSPS transgene or other mutational effects in the GM maize and their metabolic consequences.

CONCLUSION: Our findings imply that long-term (2 year) feeding trials need to be conducted to thoroughly evaluate the safety of GM foods and pesticides in their full commercial formulations.  FULL TEXT

Lopes et al., 2014

Lopes FM, Varela Junior AS, Corcini CD, da Silva AC, Guazzelli VG, Tavares G, da Rosa CE, “Effect of glyphosate on the sperm quality of zebrafish Danio rerio,” Aquatic Toxicology, 2014, 155, DOI: 10.1016/j.aquatox.2014.07.006.

ABSTRACT

Glyphosate is a systemic, non-selective herbicide widely used in agriculture worldwide. It acts as an inhibitor of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase by interrupting the synthesis of essential aromatic amino acids. This pathway is not present in animals, although some studies have shown that the herbicide glyphosate can affect fish reproduction. In this study, the effect of glyphosate on sperm quality of the fish Danio rerio was investigated after 24 and 96 h of exposure at concentrations of 5mg/L and 10mg/L. The spermatic cell concentration, sperm motility and motility period were measured employing conventional microscopy. The mitochondrial functionality, membrane integrity and DNA integrity were measured by fluorescence microscopy using specific probes. No significant differences in sperm concentration were observed; however, sperm motility and the motility period were reduced after exposure to both glyphosate concentrations during both exposure periods. The mitochondrial functionality and membrane and DNA integrity were also reduced at the highest concentration during both exposure periods. The results showed that glyphosate can induce harmful effects on reproductive parameters in D. rerio and that this change would reduce the fertility rate of these animals.

Armiliato et al., 2014

Armiliato N, Ammar D, Nezzi L, Straliotto M, Muller YM, Nazari EM, “Changes in ultrastructure and expression of steroidogenic factor-1 in ovaries of zebrafish Danio rerio exposed to glyphosate,” Journal of Toxicology and Environmental Health A, 2014, 77:7, DOI: 10.1080/15287394.2014.880393.

ABSTRACT

Glyphosate is a broad-spectrum organophosphate (OP) herbicide, highly soluble in water, and when applied in terrestrial systems it penetrates into soil, eventually reaching the aquatic community and affecting nontarget organisms. The aim of this study was to evaluate the toxicity of glyphosate on ovaries of zebrafish (Danio rerio). Ovaries (n = 18 per triplicate) were exposed to 65 μg/L of glyphosate [N-(phosphonomethyl) glycine] for 15 d. This concentration was determined according to Resolution 357/2005/CONAMA/Brazil, which establishes the permissible concentration of glyphosate in Brazilian inland waters. Nonexposed ovaries (n = 18 per triplicate) were used as control. Subsequently, morphology and expression of steroidogenic factor-1 (SF-1) of exposed and nonexposed ovaries was determined. No apparent changes were noted in general morphology of exposed and nonexposed ovaries. However, a significant increase in diameter of oocytes was observed after exposure to glyphosate. When ovarian ultrastructure was examined the presence of concentric membranes, appearing as myelin-like structures, associated with the external membranes of mitochondria and with yolk granules was found. After glyphosate exposure, immunohistochemistry and immunoblotting revealed greater expression of SF-1 in the oocytes, which suggests a relationship between oocyte growth and SF-1 expression. These subtle adverse effects of glyphosate on oocytes raised a potential concern for fish reproduction. These results contribute to understanding glyphosate-induced toxicity to nontarget organisms, showing subcellular and molecular impairments that may affect reproduction in +female fish.

Romano et al., 2011

Romano MA, Romano RM, Santos LD, Wisniewski P, Campos DA, de Souza PB, Viau P, Bernardi MM, Nunes MT, de Oliveira CA, “Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression.,” Archives in Toxicology, 2012, 86:4, DOI: 10.1007/s00204-011-0788-9.

ABSTRACT:

Sexual differentiation in the brain takes place from late gestation to the early postnatal days. This is dependent on the conversion of circulating testosterone into estradiol by the enzyme aromatase. The glyphosate was shown to alter aromatase activity and decrease serum testosterone concentrations. Thus, the aim of this study was to investigate the effect of gestational maternal glyphosate exposure (50 mg/kg, NOAEL for reproductive toxicity) on the reproductive development of male offspring. Sixty-day-old male rat offspring were evaluated for sexual behavior and partner preference; serum testosterone concentrations, estradiol, FSH and LH; the mRNA and protein content of LH and FSH; sperm production and the morphology of the seminiferous epithelium; and the weight of the testes, epididymis and seminal vesicles. The growth, the weight and age at puberty of the animals were also recorded to evaluate the effect of the treatment. The most important findings were increases in sexual partner preference scores and the latency time to the first mount; testosterone and estradiol serum concentrations; the mRNA expression and protein content in the pituitary gland and the serum concentration of LH; sperm production and reserves; and the height of the germinal epithelium of seminiferous tubules. We also observed an early onset of puberty but no effect on the body growth in these animals. These results suggest that maternal exposure to glyphosate disturbed the masculinization process and promoted behavioral changes and histological and endocrine problems in reproductive parameters. These changes associated with the hypersecretion of androgens increased gonadal activity and sperm production.

Eriksson et al., 2008

Mikael Eriksson, Lennart Hardell, Michael Carlberg and Måns Åkerman, “Pesticide exposure as risk factor for non-Hodgkin lymphoma including histopathological subgroup analysis,” International Journal of Cancer, 2008, 123, DOI: 10.1002/ijc.23589

ABSTRACT:

We report a population based case–control study of exposure to pesticides as risk factor for non-Hodgkin lymphoma (NHL). Male and female subjects aged 18–74 years living in Sweden were included during December 1, 1999, to April 30, 2002. Controls were selected from the national population registry. Exposure to different agents was assessed by questionnaire. In total 910 (91%) cases and 1016(92%) controls participated. Exposure to herbicides gave odds ratio(OR) 1.72, 95% confidence interval (CI) 1.18–2.51. Regarding phenoxyacetic acids highest risk was calculated for MCPA; OR 2.81,95% CI 1.27–6.22, all these cases had a latency period >10 years.Exposure to glyphosate gave OR 2.02, 95% CI 1.10–3.71 and with>10 years latency period OR 2.26, 95% CI 1.16–4.40. Insecticides overall gave OR 1.28, 95% CI 0.96–1.72 and impregnating agents OR 1.57, 95% CI 1.07–2.30. Results are also presented for different entities of NHL. In conclusion our study confirmed an association between exposure to phenoxyacetic acids and NHL and the association with glyphosate was considerably strengthened. FULL TEXT

De Roos et al., 2003

A J De Roos, S Zahm, K Cantor, D Weisenburger, F Holmes, L Burmeister, and A Blair, “Integrative assessment of multiple pesticides as risk factors for non-Hodgkin’s lymphoma among men,” Occupational and Environmental Medicine, 2003, 60:9, DOI: 10.1136/oem.60.9.e1

ABSTRACT:

METHODS: During the 1980s, the National Cancer Institute conducted three case-control studies of NHL in the midwestern United States. These pooled data were used to examine pesticide exposures in farming as risk factors for NHL in men. The large sample size (n = 3417) allowed analysis of 47 pesticides simultaneously, controlling for potential confounding by other pesticides in the model, and adjusting the estimates based on a prespecified variance to make them more stable.

RESULTS: Reported use of several individual pesticides was associated with increased NHL incidence, including organophosphate insecticides coumaphos, diazinon, and fonofos, insecticides chlordane, dieldrin, and copper acetoarsenite, and herbicides atrazine, glyphosate, and sodium chlorate. A subanalysis of these “potentially carcinogenic” pesticides suggested a positive trend of risk with exposure to increasing numbers.

CONCLUSION: Consideration of multiple exposures is important in accurately estimating specific effects and in evaluating realistic exposure scenarios.  FULL TEXT

Duke, 2015

Stephen O Duke, “Perspectives on transgenic, herbicide‐resistant crops in the United States almost 20 years after introduction,” Pest Management Science, 2015, 71:5, DOI: 10.1002/ps.3863.

ABSTRACT:

Herbicide-resistant crops have had profound impacts on weed management. Most of the impact has been by glyphosate-resistant maize, cotton, soybean, and canola. Significant economic savings, yield increases, and more efficacious and simplified weed management resulted in widespread adoption of the technology. Initially, glyphosate-resistant crops enabled significantly reduced tillage and reduced the environmental impact of weed management. Continuous use of glyphosate with glyphosate-resistant crops over broad areas facilitated the evolution of glyphosate-resistant weeds, which have resulted in increases in the use of tillage and other herbicides with glyphosate, reducing some of the initial environmental benefits of glyphosate-resistant crops. Transgenic crops with resistance to auxinic herbicides, as well as to herbicides that inhibit acetolactate synthase, acetyl-CoA carboxylase, and hydroxyphenylpyruvate dioxygenase, stacked with glyphosate and/or glufosinate resistance, will become available in the next few years. These technologies will provide additional weed management options for farmers, but will not have all of the positive impacts (reduced cost, simplified weed management, lowered environmental impact, and reduced tillage) that glyphosate-resistant crops had initially. In the more distant future, other herbicide-resistant crops (including non-transgenic ones), herbicides with new modes of action, and technologies that are currently in their infancy (e.g., bioherbicides, sprayable herbicidal RNAi, and/or robotic weeding) may impact the role of transgenic, herbicide-resistant crops in weed management.

Bouchard et al., 2011

Bouchard MF, Chevrier J, Harley KG, Kogut K, Vedar M, Calderon N, Trujillo C, Johnson C, Bradman A, Barr DB, Eskenazi B., “Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children.,” Environmental Health Perspectives, 2011, 119:8, DOI: 10.1289/ehp.1003185.

ABSTRACT:
CONTEXT: Organophosphate (OP) pesticides are neurotoxic at high doses. Few studies have examined whether chronic exposure at lower levels could adversely affect children’s cognitive development.

OBJECTIVE: We examined associations between prenatal and postnatal exposure to OP pesticides and cognitive abilities in school-age children.

METHODS: We conducted a birth cohort study (Center for the Health Assessment of Mothers and Children of Salinas study) among predominantly Latino farmworker families from an agricultural community in California. We assessed exposure to OP pesticides by measuring dialkyl phosphate (DAP) metabolites in urine collected during pregnancy and from children at 6 months and 1, 2, 3.5, and 5 years of age. We administered the Wechsler Intelligence Scale for Children, 4th edition, to 329 children 7 years of age. Analyses were adjusted for maternal education and intelligence, Home Observation for Measurement of the Environment score, and language of cognitive assessment.

RESULTS: Urinary DAP concentrations measured during the first and second half of pregnancy had similar relations to cognitive scores, so we used the average of concentrations measured during pregnancy in further analyses. Averaged maternal DAP concentrations were associated with poorer scores for Working Memory, Processing Speed, Verbal Comprehension, Perceptual Reasoning, and Full-Scale intelligence quotient (IQ). Children in the highest quintile of maternal DAP concentrations had an average deficit of 7.0 IQ points compared with those in the lowest quintile. However, children’s urinary DAP concentrations were not consistently associated with cognitive scores.

CONCLUSIONS: Prenatal but not postnatal urinary DAP concentrations were associated with poorer intellectual development in 7-year-old children. Maternal urinary DAP concentrations in the present study were higher but nonetheless within the range of levels measured in the general U.S. population. FULL TEXT

Back To Top