skip to Main Content

Bibliography Tag: heartland region

Pardo et al., 2020

Pardo, L. A., Beane Freeman, L. E., Lerro, C. C., Andreotti, G., Hofmann, J. N., Parks, C. G., Sandler, D. P., Lubin, J. H., Blair, A., & Koutros, S.; “Pesticide exposure and risk of aggressive prostate cancer among private pesticide applicators;” Environmental Health, 2020, 19(1), 30; DOI: 10.1186/s12940-020-00583-0. https://www.ncbi.nlm.nih.gov/pubmed/32138787.

ABSTRACT:

BACKGROUND: Prostate cancer (PCa) is one of the most commonly diagnosed cancers among men in developed countries; however, little is known about modifiable risk factors. Some studies have implicated organochlorine and organophosphate insecticides as risk factors (particularly the organodithioate class) and risk of clinically significant PCa subtypes. However, few studies have evaluated other pesticides. We used data from the Agricultural Health Study, a large prospective cohort of pesticide applicators in North Carolina and Iowa, to extend our previous work and evaluate 39 additional pesticides and aggressive PCa.

METHODS: We used Cox proportional hazards models, with age as the time scale, to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between ever use of individual pesticides and 883 cases of aggressive PCa (distant stage, poorly differentiated grade, Gleason score >/= 7, or fatal prostate cancer) diagnosed between 1993 and 2015. All models adjusted for birth year, state, family history of PCa, race, and smoking status. We conducted exposure-response analyses for pesticides with reported lifetime years of use.

RESULTS: There was an increased aggressive PCa risk among ever users of the organodithioate insecticide dimethoate (n = 54 exposed cases, HR = 1.37, 95% CI = 1.04, 1.80) compared to never users. We observed an inverse association between aggressive PCa and the herbicide triclopyr (n = 35 exposed cases, HR = 0.68, 95% CI = 0.48, 0.95), with the strongest inverse association for those reporting durations of use above the median (>/= 4 years; n = 13 exposed cases, HR=0.44, 95% CI=0.26, 0.77).

CONCLUSION: Few additional pesticides were associated with prostate cancer risk after evaluation of extended data from this large cohort of private pesticide applicators.

FULL TEXT

Winchester et al., 2019

Winchester, Paul, Reiter, Jill L., Proctor, Cathy, Gerona, Roy R., Avery, Kayleigh D., Bromm, Jennifer R., Elsahy, Deena A, Hadley, Emily A., McGraw, Sara N., & Jones, Dana D., “Glyphosate in 1st Trimester of Pregnancy: Herbicides in the Womb,” 2019, Presented at the Pediatric Academic Societies (PAS) Meeting 2019, 4/24-5/1/2019, Baltimore, MD.

ABSTRACT:

BACKGROUND: Our previous study demonstrated that >90% of pregnant Midwest women had detectable glyphosate (GLY) in their urine. Most glyphosate exposure occurs through food & certain beverages but not through drinking water. Shorter pregnancies, rural address and caffeinated beverages were associated with higher GLY levels. The cohort was small and predominantly Caucasian. The current study was needed to confirm high rates of GLY detection in a racially more diverse high risk population.
OBJECTIVE: Will GLY be detected in a majority of pregnancies regardless of race/ethnicity? Are GLY levels associated with adverse pregnancy outcomes? Do GLY levels vary by season of collection in pregnancy?
DESIGN/METHODS: Prospective observation study. Discarded urine from 1st trimester pregnancies were collected prospectively from a high risk University obstetrical clinic. All pregnancy outcomes and neonatal outcomes were abstracted. Urines were frozen, shipped to analytical lab (USCF, RG) for analysis. Urine GLY (Glyphosate (N(phosphomethyl) glycine) was analyzed via liquid chromatography-tandem mass spectrometry (LC-MS/MS), limit of quantification of 0.1 ng/mL. GLY measured as independent variable was compared to multiple variables using bivariate analysis.
RESULTS: GLY was detected in 99% (186 of 187) pregnancies. Levels varied from 1.004 to 10.31ng/mL with geometric mean 3.264ng/mL. Mean maternal age was 30, with 69% white, 4.2% Hispanic, 12% Black, 3.7% Asian and one “other”. GLY levels did not differ significantly by racial/ethnic group. GLY levels were not significantly difference between preterm and term outcomes, multiple/singleton or between fetal loss and live births. GLY levels were higher with increasing gestation at enrollment with 4-8 weeks GLY 2.73 vs 9-13 weeks 3.51(p=.0098). Significantly higher GLY levels were found in April-July pregnancies vs other months(3.64 vs 3.07 p=.03). NICU admission rates were 85% for preterm and 35% for term. Birth defect rate was12% and 37% had intrauterine drug exposure or NAS. Preterm birth rate was 31%. CONCLUSIONS: Glyphosate was found in virtually all of these high risk pregnancies in the first trimester regardless of race/ethnicity, plurality, fetal loss or gestation at birth. GLY levels rose with increasing gestation in the first trimester suggesting that gestation at measurement impacts GLY levels. Dietary sources contribute to GLY but we did find April-July are associated with higher GLY levels than other months. The fetal epigenetic consequences of 1st trimester GLY exposure remains unknown. FULL TEXT

Klarich et al., 2017

Klarich, Kathryn L., Pflug, Nicholas C., DeWald, Eden M., Hladik, Michelle L., Kolpin, Dana W., Cwiertny, David M., & LeFevre, Gregory H., “Occurrence of Neonicotinoid Insecticides in Finished Drinking Water and Fate during Drinking Water Treatment,” Environmental Science & Technology Letters, 2017, 4(5), 168-173. DOI: 10.1021/acs.estlett.7b00081.

ABSTRACT:

Neonicotinoid insecticides are widespread in surface waters across the agriculturally intensive Midwestern United States. We report for the first time the presence of three neonicotinoids in finished drinking water and demonstrate their general persistence during conventional water treatment. Periodic tap water grab samples were collected at the University of Iowa over 7 weeks in 2016 (May−July) after maize/soy planting. Clothianidin, imidacloprid, and thiamethoxam were ubiquitously detected in finished water samples at concentrations ranging from 0.24 to 57.3 ng/L. Samples collected along the University of Iowa treatment train indicate no apparent removal of clothianidin or imidacloprid, with modest thiamethoxam removal (∼50%). In contrast, the concentrations of all neonicotinoids were substantially lower in the Iowa City treatment facility finished water using granular activated carbon (GAC) filtration. Batch experiments investigated potential losses. Thiamethoxam losses are due to base-catalyzed hydrolysis under high-pH conditions during lime softening. GAC rapidly and nearly completely removed all three neonicotinoids. Clothianidin is susceptible to reaction with free chlorine and may undergo at least partial transformation during chlorination. Our work provides new insights into the persistence of neonicotinoids and their potential for transformation during water treatment and distribution, while also identifying GAC as a potentially effective management tool for decreasing neonicotinoid concentrations in finished drinking water.

Mattix et al., 2007

Mattix KD, Winchester PD, Scherer LR, “Incidence of abdominal wall defects is related to surface water atrazine and nitrate levels,” Journal of Pediatric Surgery, 2007, 42:6, DOI: 10.1016/j.jpedsurg.2007.01.027

ABSTRACT:

BACKGROUND: Gastroschisis and omphalocele are congenital abdominal wall defects (AWD). Atrazine and nitrates are common agricultural fertilizers.

METHODS: The Centers for Disease Control and Prevention natality data set was used to collect data for patients with AWD born between January 1990 and December 2002. Similar data were obtained from the Indiana State Department of Health. An estimated date of conception was calculated by birth date and gestational age. Surface water nitrate and atrazine levels for Indiana were collected from US Geological Survey data. Midwest was defined as Indiana, Illinois, Iowa, Ohio, and Nebraska. Statistical analysis was performed by chi2 test and Pearson correlation for P < or = .05.

RESULTS: The Centers for Disease Control and Prevention identified 9871 children with AWD in 1990 and in 1995-2001 of 35,876,519 live births (rate 2.75/10(5)). In Indiana, 358 children from 1990-2001 had AWD of 1,013,286 live births (rate 3.53/10(5)). The AWD rate in Indiana was significantly higher than the national rate in 1996 (P = .0377), 1998 (P = .0005), and 2001 (P = .0365) and significantly higher than the Midwest rate in 1998 (P = .0104). Monthly comparison demonstrated a positive correlation of AWD rate and mean atrazine levels (P = .0125).

CONCLUSION: Indiana has significantly higher rates of AWD compared with national rates. Increased atrazine levels correlate with increased incidence of AWD.

 

Nowell et al., 2018

Nowell Lisa H., Moran Patrick W., Schmidt Travis S., Norman Julia E., Nakagaki Naomi, Shoda Megan E., Mahler Barbara J., Van Metre Peter C., Stone Wesley W., Sandstrom Mark W., Hladik Michelle L., “Complex mixtures of dissolved pesticides show potential aquatic toxicity in a synoptic study of Midwestern U.S. streams,” Science of the Total Environment, 613-614, 2018, DOI: 10.1016/j.scitotenv.2017.06.156

ABSTRACT:

Aquatic organisms in streams are exposed to pesticide mixtures that vary in composition over time in response to changes in flow conditions, pesticide inputs to the stream, and pesticide fate and degradation within the stream. To characterize mixtures of dissolved-phase pesticides and degradates in Midwestern streams, a synoptic study was conducted at 100 streams during May–August 2013. In weekly water samples, 94 pesticides and 89 degradates were detected, with a median of 25 compounds detected per sample and 54 detected per site. In a screening-level assessment using aquatic-life benchmarks and the Pesticide Toxicity Index (PTI), potential effects on fish were unlikely in most streams. For invertebrates, potential chronic toxicity was predicted in 53% of streams, punctuated in 12% of streams by acutely toxic exposures. For aquatic plants, acute but likely reversible effects on biomass were predicted in 75% of streams, with potential longer-term effects on plant communities in 9% of streams. Relatively few pesticides in water—atrazine, acetochlor, metolachlor, imidacloprid, fipronil, organophosphate insecticides, and carbendazim—were predicted to be major contributors to potential toxicity. Agricultural streams had the highest potential for effects on plants, especially in May–June, corresponding to high spring-flush herbicide concentrations. Urban streams had higher detection frequencies and concentrations of insecticides and most fungicides than in agricultural streams, and higher potential for invertebrate toxicity, which peaked during July–August. Toxicity-screening predictions for invertebrates were supported by quantile regressions showing significant associations for the Benthic Invertebrate-PTI and imidacloprid concentrations with invertebrate community metrics for MSQA streams, and by mesocosm toxicity testing with imidacloprid showing effects on invertebrate communities at environmentally relevant concentrations. This study documents the most complex pesticide mixtures yet reported in discrete water samples in the U.S. and, using multiple lines of evidence, predicts that pesticides were potentially toxic to nontarget aquatic life in about half of the sampled streams.  FULL TEXT

De Roos et al., 2003

A J De Roos, S Zahm, K Cantor, D Weisenburger, F Holmes, L Burmeister, and A Blair, “Integrative assessment of multiple pesticides as risk factors for non-Hodgkin’s lymphoma among men,” Occupational and Environmental Medicine, 2003, 60:9, DOI: 10.1136/oem.60.9.e1

ABSTRACT:

METHODS: During the 1980s, the National Cancer Institute conducted three case-control studies of NHL in the midwestern United States. These pooled data were used to examine pesticide exposures in farming as risk factors for NHL in men. The large sample size (n = 3417) allowed analysis of 47 pesticides simultaneously, controlling for potential confounding by other pesticides in the model, and adjusting the estimates based on a prespecified variance to make them more stable.

RESULTS: Reported use of several individual pesticides was associated with increased NHL incidence, including organophosphate insecticides coumaphos, diazinon, and fonofos, insecticides chlordane, dieldrin, and copper acetoarsenite, and herbicides atrazine, glyphosate, and sodium chlorate. A subanalysis of these “potentially carcinogenic” pesticides suggested a positive trend of risk with exposure to increasing numbers.

CONCLUSION: Consideration of multiple exposures is important in accurately estimating specific effects and in evaluating realistic exposure scenarios.  FULL TEXT

Waddell et al., 2001

Waddell BL, Zahm SH, Baris D, Weisenburger DD, Holmes F, Burmeister LF, Cantor KP, Blair A., “Agricultural use of organophosphate pesticides and the risk of non-Hodgkin’s lymphoma among male farmers (United States).,” Cancer Causes Control, 2001, 12:6.

ABSTRACT:

OBJECTIVE: Data from three population-based case-control studies conducted in Kansas, Nebraska, Iowa, and Minnesota were pooled to evaluate the relationship between the use of organophosphate pesticides and non-Hodgkin’s lymphoma (NHL) among white male farmers.

METHODS: The data set included 748 cases of non-Hodgkin’s lymphoma and 2236 population-based controls. Telephone or in-person interviews were utilized to obtain information on the use of pesticides. Odds ratios (OR) adjusted for age, state of residence, and respondent status, as well as other pesticide use where appropriate, were estimated by logistic regression.

RESULTS: Use of organophosphate pesticides was associated with a statistically significant 50% increased risk of NHL, but direct interviews showed a significantly lower risk (OR = 1.2) than proxy interviews (OR = 3.0). Among direct interviews the risk of small lymphocytic lymphoma increased with diazinon use (OR = 2.8), after adjustment for other pesticide exposures.

CONCLUSIONS: Although we found associations between the risk of NHL and several groupings and specific organophosphate pesticides, larger risks from proxy respondents complicate interpretation. Associations, however, between reported use of diazinon and NHL, particularly diffuse and small lymphocytic lymphoma, among subjects providing direct interviews are not easily discounted.

Curwin et al., 2007

Brian Curwin, Misty Hein, Wayne Sanderson, Cynthia Striley, Dick Heederik, Hans Kromhout, Stephen Reynolds, Michael Alavanja, “Urinary Pesticide Concentrations Among Children, Mothers and Fathers Living in Farm and Non-Farm Households in Iowa,” The Annals of Occupational Hygiene, 51:1, January 2007, DOI: 10.1093/annhyg/mel062

ABSTRACT:

In the spring and summer of 2001, 47 fathers, 48 mothers and 117 children of Iowa farm and non-farm households were recruited to participate in a study investigating take-home pesticide exposure. On two occasions ∼1 month apart, urine samples from each participant and dust samples from various rooms were collected from each household and were analyzed for atrazine, metolachlor, glyphosate and chlorpyrifos or their metabolites. The adjusted geometric mean (GM) level of the urine metabolite of atrazine was significantly higher in fathers, mothers and children from farm households compared with those from non-farm households (P ≤ 0.0001). Urine metabolites of chlorpyrifos were significantly higher in farm fathers (P = 0.02) and marginally higher in farm mothers (P = 0.05) when compared with non-farm fathers and mothers, but metolachlor and glyphosate levels were similar between the two groups. GM levels of the urinary metabolites for chlorpyrifos, metolachlor and glyphosate were not significantly different between farm children and non-farm children. Farm children had significantly higher urinary atrazine and chlorpyrifos levels (P = 0.03 and P = 0.03 respectively) when these pesticides were applied by their fathers prior to sample collection than those of farm children where these pesticides were not recently applied. Urinary metabolite concentration was positively associated with pesticide dust concentration in the homes for all pesticides except atrazine in farm mothers; however, the associations were generally not significant. There were generally good correlations for urinary metabolite levels among members of the same family.  FULL TEXT

Sathyanarayana et al., 2010

Sheela Sathyanarayana MD MPH, Olga Basso PhD, Catherine J. Karr MD PhD MS, Paula Lozano MD MPH, Michael Alavanja PhD, Dale P. Sandler PhD & Jane A. Hoppin ScD, “Maternal Pesticide Use and Birth Weight in the Agricultural Health Study,” Journal of Agromedicine, 15:2, 2010, DOI: 10.1080/10599241003622699

ABSTRACT:

Studies examining the association between maternal pesticide exposure and low birth weight yield conflicting results. The authors examined the association between maternal pesticide use and birth weight among women in the Agricultural Health Study, a large study of pesticide applicators and their spouses in Iowa and North Carolina. The authors evaluated self-reported pesticide use of 27 individual pesticides in relation to birth weight among 2246 farm women whose most recent singleton birth occurred within 5 years of enrollment (1993–1997). The authors used linear regression models adjusted for site, preterm birth, medical parity, maternal body mass index, height, and smoking. The results showed that mean infant birth weight was 3586 g (± 546 g), and 3% of the infants were low birth weight (<2500 g). First-trimester pesticide-related tasks were not associated with birth weight. Ever use of the pesticide carbaryl was associated with decreased birth weight (−82 g, 95% confidence interval [CI] = −132, −31). This study thus provides limited evidence about pesticide use as a modulator of birth weight. Overall, the authors observed no associations between birth weight and pesticide-related activities during early pregnancy; however, the authors have no data on temporal specificity of individual pesticide exposures prior to or during pregnancy and therefore cannot draw conclusions related to these exposure windows. Given the widespread exposure to pesticide products, additional evaluation of maternal pregnancy exposures at specific time windows and subsequent birth outcomes is warranted.

Hettinger, 2017

Johnathan Hettinger, “Complaints surge about weed killer dicamba’s damage to oak trees,” October 9, 2017, Midwest Center for Investigative Reporting.

SUMMARY:

Dicamba drift is being blamed for damage to oak trees in Iowa, Illinois, and Tennessee.  More than 1,000 complaints were filed in Iowa, and in Tennessee the oak trees at the state’s largest natural lake were damaged.  Monsanto declined to comment, and a BASK spokesperson encourages growers who see damage to contact them but states that they “don’t believe volatility is a driving factor based on past research and experience.”  The article reports that internal Monsanto emails obtained through a Freedom of Information Act request, show the company is trying to shift the blame for oak tree damage to other pesticides.  FULL TEXT

Back To Top