skip to Main Content

Bibliography Tag: herbicide use

Benbrook and Benbrook, 2021

Benbrook, Charles, & Benbrook, Rachel (2021). “A minimum data set for tracking changes in pesticide use.” In R. Mesnage & J. Zaller (Eds.), Herbicides: Elsevier and RTI Press.

ABSTRACT:

A frequently asked but deceptively simple question often arises about pesticide use on a given farm or crop: Is pesticide use going up, down, or staying about the same? Where substantial changes in pesticide use are occurring, it is also important to understand the factors driving change. These might include more or fewer hectares planted, a change in the crop mix, a higher or lower percentage of hectares treated, or higher or lower rates of application and/or number of applications. Or, it might arise from a shift to other pesticides applied at a higher or lower rate and/or lessened or greater reliance on nonpesticidal strategies and integrated pest management (IPM). Questions about whether pesticide use is changing and why arise for a variety of reasons. Rising use typically increases farmer costs and cuts into profit margins. It generally raises the risk of adverse environmental and/or public health outcomes. It can accelerate the emergence and spread of organisms resistant to applied pesticides. If the need to spray more continues year after year for long enough, farming systems become unsustainable. Lessened reliance on and use of pesticides, on the other hand, are typically brought about and can only be sustained by incrementally more effective prevention-based biointensive IPM systems (bioIPM).1–3 Fewer pesticide applications and fewer pounds/kilograms of active ingredient applied reduce the impacts on nontarget organisms and provide space for beneficial organisms and biodiversity to flourish. Such systems reduce the odds of significant crop loss in years when conditions undermine the efficacy of control measures, leading to spikes in pest populations and the risk of economically meaningful loss of crop yield and/or quality. FULL TEXT

Milesi et al., 2021

Milesi, M. M., Lorenz, V., Durando, M., Rossetti, M. F., & Varayoud, J. “Glyphosate Herbicide: Reproductive Outcomes and Multigenerational Effects.” Frontiers in Endocrinology, 12. 2021; DOI:10.3389/fendo.2021.672532.

ABSTRACT:

Glyphosate base herbicides (GBHs) are the most widely applied pesticides in the world and are mainly used in association with GBH-tolerant crop varieties. Indiscriminate and negligent use of GBHs has promoted the emergence of glyphosate resistant weeds, and consequently the rise in the use of these herbicides. Glyphosate, the active ingredient of all GBHs, is combined with other chemicals known as co-formulants that enhance the herbicide action. Nowadays, the safety of glyphosate and its formulations remain to be a controversial issue, as evidence is not conclusive whether the adverse effects are caused by GBH or glyphosate, and little is known about the contribution of co-formulants to the toxicity of herbicides. Currently, alarmingly increased levels of glyphosate have been detected in different environmental matrixes and in foodstuff, becoming an issue of social concern. Some in vitro and in vivo studies have shown that glyphosate and its formulations exhibit estrogen-like properties, and growing evidence has indicated they may disrupt normal endocrine function, with adverse consequences for reproductive health. Moreover, multigenerational effects have been reported and epigenetic mechanisms have been proved to be involved in the alterations induced by the herbicide. In this review, we provide an overview of: i) the routes and levels of human exposure to GBHs, ii) the potential estrogenic effects of glyphosate and GBHs in cell culture and animal models, iii) their long-term effects on female fertility and mechanisms of action, and iv) the consequences on health of successive generations. FULL TEXT

Mahler et al., 2021

Mahler, B. J., Nowell, L. H., Sandstrom, M. W., Bradley, P. M., Romanok, K. M., Konrad, C. P., & Van Metre, P. C.; “Inclusion of Pesticide Transformation Products Is Key to Estimating Pesticide Exposures and Effects in Small U.S. Streams;” Environmental Science & Technology, 2021; DOI: 10.1021/acs.est.0c06625.

ABSTRACT:

Improved analytical methods can quantify hundreds of pesticide transformation products (TPs), but understanding of TP occurrence and potential toxicity in aquatic ecosystems remains limited. We quantified 108 parent pesticides and 116 TPs in more than 3700 samples from 442 small streams in mostly urban basins across five major regions of the United States. TPs were detected nearly as frequently as parents (90 and 95% of streams, respectively); 102 TPs were detected at least once and 28 were detected in >20% samples in at least one region-TPs of 9 herbicides, 2 fungicides (chlorothalonil and thiophanate-methyl), and 1 insecticide (fipronil) were the most frequently detected. TPs occurred commonly during baseflow conditions, indicating chronic environmental TP exposures to aquatic organisms and the likely importance of groundwater as a TP source. Hazard quotients based on acute aquatic-life benchmarks for invertebrates and nonvascular plants and vertebrate-centric molecular endpoints (sublethal effects) quantify the range of the potential contribution of TPs to environmental risk and highlight several TP exposure-response data gaps. A precautionary approach using equimolar substitution of parent benchmarks or endpoints for missing TP benchmarks indicates that potential aquatic effects of pesticide TPs could be underestimated by an order of magnitude or more. FULL TEXT

Powles and Gaines, 2017

Powles, Stephen B., & Gaines, Todd A.; “Exploring the Potential for a Regulatory Change to Encourage Diversity in Herbicide Use;” Weed Science, 2017, 64(SP1), 649-654; DOI: 10.1614/ws-d-15-00070.1.

ABSTRACT:

An overreliance on herbicides in several important grain- and cotton-producing regions of the world has led to the widespread evolution of herbicide-resistant weed populations. Of particular concern are weed populations that exhibit simultaneous resistance to multiple herbicides (MHR). Too often, herbicides are the only tool used for weed control. We use the term herbicide-only syndrome (HOS) for this quasi-addiction to herbicides. Growers and their advisers focus on herbicide technology, unaware of or ignoring basic evolutionary principles or the necessary diversity provided by other methods of weed control. Diversity in weed control practices disrupts resistance evolution. Significant challenges exist to implementing diversity, including how to address information so that producers choose to alter existing behaviors (HOS) and take calculated risks by attempting new and more complex strategies. Herbicide resistance management in the long term will require creativity in many sectors, including roles for growers, industry, researchers, consultants, retailers, and regulators. There can be creativity in herbicide registration and regulation, as exemplified by the recent U.S. Environmental Protection Agency program that encourages herbicide registrants to register products in minor crops. We propose one idea for a regulatory incentive to enable herbicide registrants in jurisdictions such as the United States to receive an extended data exclusivity period in exchange for not developing one new herbicide in multiple crops used together in rotation, or for implementing stewardship practices such as robust mixtures or limitations on application frequency. This incentive would provide a mechanism to register herbicides in ways that help to ensure herbicide longevity. Approaches based only on market or financial incentives have contributed to the current situation of widespread MHR. Our suggestion for regulatory creativity is one way to provide both financial and biological benefits to the registering company and to the overall stakeholder community by incentivizing good resistance management. FULL TEXT

Osteen and Fernandez-Cornejo, 2016

Osteen, Craig D., & Fernandez-Cornejo, Jorge; “Herbicide Use Trends: A Backgrounder;” Choices, 2016, 31(4th Quarter 2016).

ABSTRACT:

None Available

FULL TEXT

Givens et al., 2017

Givens, Wade A., Shaw, David R., Johnson, William G., Weller, Stephen C., Young, Bryan G., Wilson, Robert G., Owen, Micheal D. K., & Jordan, David; “A Grower Survey of Herbicide Use Patterns in Glyphosate-Resistant Cropping Systems;” Weed Technology, 2017, 23(1), 156-161; DOI: 10.1614/wt-08-039.1.

ABSTRACT:

A telephone survey was conducted with growers in Iowa, Illinois, Indiana, Nebraska, Mississippi, and North Carolina to discern the utilization of the glyphosate-resistant (GR) trait in crop rotations, weed pressure, tillage practices, herbicide use, and perception of GR weeds. This paper focuses on survey results regarding herbicide decisions made during the 2005 cropping season. Less than 20% of the respondents made fall herbicide applications. The most frequently used herbicides for fall applications were 2,4-D and glyphosate, and these herbicides were also the most frequently used for preplant burndown weed control in the spring. Atrazine and acetochlor were frequently used in rotations containing GR corn. As expected, crop rotations using a GR crop had a high percentage of respondents that made one to three POST applications of glyphosate per year. GR corn, GR cotton, and non-GR crops had the highest percentage of growers applying nonglyphosate herbicides during the 2005 growing season. A crop rotation containing GR soybean had the greatest negative impact on non-glyphosate use. Overall, glyphosate use has continued to increase, with concomitant decreases in utilization of other herbicides. FULL TEXT

Bonny, 2011

Bonny, Sylvie; “Herbicide-tolerant Transgenic Soybean over 15 Years of Cultivation: Pesticide Use, Weed Resistance, and Some Economic Issues. The Case of the USA;” Sustainability, 2011, 3(9), 1302-1322; DOI: 10.3390/su3091302.

ABSTRACT:

Genetically modified (GM) herbicide-tolerant (HT) crops have been largely adopted where they have been authorized. Nevertheless, they are fiercely criticized by some, notably because of the herbicide use associated with them. However, how much herbicide is applied to GMHT crops compared to conventional crops, and what impacts does the use of herbicide have? The paper first presents some factors explaining the predominance of GMHT crops. Then, trends in the use of herbicide for GM crops are studied in the case of the most widespread HT crop: HT soybean in the USA. The trends in the toxicity of herbicides applied to HT soybean are also addressed, as well as the appearance of glyphosate-resistant (GR) weeds. Lastly, the paper examines the spread of GR weeds and its impact. How are farmers, weed scientists, and the industry coping with this development, and what are the prospects of glyphosate-tolerant crops given weed resistance? In conclusion, some issues of sustainability and innovation governance raised by genetically modified herbicide-tolerant crops are discussed.  FULL TEXT

Alberto et al., 2016

Alberto, D., Serra, A. A., Sulmon, C., Gouesbet, G., & Couee, I.; “Herbicide-related signaling in plants reveals novel insights for herbicide use strategies, environmental risk assessment and global change assessment challenges;” Science of The Total Environment, 2016, 569-570, 1618-1628; DOI: 10.1016/j.scitotenv.2016.06.064.

ABSTRACT:

Herbicide impact is usually assessed as the result of a unilinear mode of action on a specific biochemical target with a typical dose-response dynamics. Recent developments in plant molecular signaling and crosstalk between nutritional, hormonal and environmental stress cues are however revealing a more complex picture of inclusive toxicity. Herbicides induce large-scale metabolic and gene-expression effects that go far beyond the expected consequences of unilinear herbicide-target-damage mechanisms. Moreover, groundbreaking studies have revealed that herbicide action and responses strongly interact with hormone signaling pathways, with numerous regulatory protein-kinases and -phosphatases, with metabolic and circadian clock regulators and with oxidative stress signaling pathways. These interactions are likely to result in mechanisms of adjustment that can determine the level of sensitivity or tolerance to a given herbicide or to a mixture of herbicides depending on the environmental and developmental status of the plant. Such regulations can be described as rheostatic and their importance is discussed in relation with herbicide use strategies, environmental risk assessment and global change assessment challenges. FULL TEXT

Hoppin et al., 2002

Hoppin, J. A., Yucel, F., Dosemeci, M., & Sandler, D. P.; “Accuracy of self-reported pesticide use duration information from licensed pesticide applicators in the Agricultural Health Study;” Journal of Exposure Analysis and Environmental Epidemiology, 2002, 12(5), 313-318; DOI: 10.1038/sj.jea.7500232.

ABSTRACT:

Epidemiologists frequently rely on self-reported information regarding a variety of exposures including smoking history, medication use, and occupational exposure because other sources of information are either unavailable or difficult to obtain. One way to evaluate the accuracy of self-reported information is through logic checks using other sources. To assess the quality of the self-reported pesticide product use history of 57,311 licensed pesticide applicators in the Agricultural Health Study (AHS), we compared the self-reported decade of first use and total years of use to the year the pesticide active ingredient was first registered for use. We obtained pesticide active ingredient registration information from the United States Environmental Protection Agency (USEPA) and other publicly available sources for the 52 pesticides on the AHS initial questionnaires administered from 1994 to 1997. Based on the registration year, we assessed 19 pesticides for potential inaccuracies regarding duration of use or decade of first use. When calculating potential total years of use, we did not consider the impact of chemicals being removed from the market, since the possibility for continued use existed. The majority of respondents provided plausible responses for both decade of first use and total duration of use. On average, 1% of the subjects overestimated total possible duration of use, ranging from less than 1% for carbofuran and chlorpyrifos to 5% for imazethapyr. Decade of first use was also reasonably reported, although more subjects did not report decade of first use than duration of use, with an average of 6% of subjects missing decade information for an individual chemical. For subjects who reported a decade of first use, 98% gave plausible responses on average, with overestimates highest for cyanazine, introduced in 1971 (6% reported earlier use), and chlorimuron ethyl, introduced in 1985 (7% reported earlier use). This analysis provided the opportunity to consider only one source of potential overreporting of exposure, and while underreporting may have also occurred, we cannot evaluate its role nor the balance between these potential inaccuracies. While we are unable to validate directly the accuracy of a respondent’s use of pesticides, this analysis suggests that participants provide plausible information regarding their pesticide use. FULL TEXT

Gage et al., 2019

Gage, Karla L., Krausz, Ronald F., & Walters, S. Alan; “Emerging Challenges for Weed Management in Herbicide-Resistant Crops;” Agriculture, 2019, 9(8); DOI: 10.3390/agriculture9080180.

ABSTRACT:

Since weed management is such a critical component of agronomic crop production systems, herbicides are widely used to provide weed control to ensure that yields are maximized. In the last few years, herbicide-resistant (HR) crops, particularly those that are glyphosate-resistant, and more recently, those with dicamba (3,6-dichloro-2-methoxybenzoic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) resistance are changing the way many growers manage weeds. However, past reliance on glyphosate and mistakes made in stewardship of the glyphosate-resistant cropping systemhave directly led to the current weed resistance problems that now occur in many agronomic cropping systems, and new technologies must be well-stewarded. New herbicide-resistant trait technologies in soybean, such as dicamba-, 2,4-D-, and isoxaflutole- ((5-cyclopropyl-4-isoxazolyl)[2-(methylsulfonyl)-4-(trifluoromethyl)phenyl]methanone) resistance, are being combined with glyphosate- and glufosinate-resistance traits to manage herbicide-resistant weed populations. In cropping systems with glyphosate-resistant weed species, these new trait options may provide effective weed management tools, although there may be increased risk of off-target movement and susceptible plant damage with the use of some of these technologies. The use of diverse weed management practices to reduce the selection pressure for herbicide-resistant weed evolution is essential to preserve the utility of new traits. The use of herbicides with differing sites of action (SOAs), ideally in combination as mixtures, but also in rotation as part of a weed management program may slow the evolution of resistance in some cases. Increased selection pressure from the effects of some herbicide mixtures may lead to more cases of metabolic herbicide resistance. The most effective long-term approach for weed resistance management is the use of Integrated Weed Management (IWM) which may build the ecological complexity of the cropping system. Given the challenges in management of herbicide-resistant weeds, IWM will likely play a critical role in enhancing future food security for a growing global population. FULL TEXT

Back To Top