skip to Main Content

Bibliography Tag: other health risks

Nardi et al., 2017

Nardi, Jessica, Moras, Patricia Bonamigo, Koeppe, Carina, Dallegrave, Eliane, Leal, Mirna Bainy, & Rossato-Grando, Luciana Grazziotin, “Prepubertal subchronic exposure to soy milk and glyphosate leads to endocrine disruption,” Food and Chemical Toxicology, 2017, 100, 247-252. DOI: 10.1016/j.fct.2016.12.030.

ABSTRACT:

Lactose intolerance is characterized by low or inexistent levels of lactase, and the main treatment consists of dietary changes, especially replacing dairy milk by soy milk. Soy contains phytoestrogens, substances with known estrogenic activity, besides, glyphosate-based herbicides are extensively used in soy crops, being frequently a residue in soy beans, bringing to a concern regarding the consumption of soy-based products, especially for children in breastfeeding period with lactose intolerance. This study evaluated the pubertal toxicity of a soy milk rich feeding (supplemented or not with glyphosate, doses of 50 and 100 mg/kg) during prepubertal period in male rats. Endocrine disruption was observed through decrease in testosterone levels, decrease in Sertoli cell number and increase in the percentage of degenerated Sertoli and Leydig cells in animals receiving soy milk supplemented with glyphosate (both doses) and in animals treated only with soy milk. Animals treated with soy milk with glyphosate (both doses) showed decrease spermatids number and increase of epididymal tail mass compared to control, and decrease in the diameter of seminiferous tubules compared to soy milk control group. Animals receiving soy milk supplemented with 100 mg/kg glyphosate showed decrease in round spermatids and increase in abnormal sperm morphology, compared to control. FULL TEXT

Motta et al., 2018

Motta, Erick V S, Raymann, Kasie, & Moran, Nancy A, “Glyphosate perturbs the gut microbiota of honey bees,” Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(41), 10305-10310. DOI: 10.1073/pnas.1803880115.

ABSTRACT:

Glyphosate, the primary herbicide used globally for weed control, targets the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme in the shikimate pathway found in plants and some microorganisms. Thus, glyphosate may affect bacterial symbionts of animals living near agricultural sites, including pollinators such as bees. The honey bee gut microbiota is dominated by eight bacterial species that promote weight gain and reduce pathogen susceptibility. The gene encoding EPSPS is present in almost all sequenced genomes of bee gut bacteria, indicating that they are potentially susceptible to glyphosate. We demonstrated that the relative and absolute abundances of dominant gut microbiota species are decreased in bees exposed to glyphosate at concentrations documented in the environment. Glyphosate exposure of young workers increased mortality of bees subsequently exposed to the opportunistic pathogen Serratia marcescens. Members of the bee gut microbiota varied in susceptibility to glyphosate, largely corresponding to whether they possessed an EPSPS of class I (sensitive to glyphosate) or class II (insensitive to glyphosate). This basis for differences in sensitivity was confirmed using in vitro experiments in which the EPSPS gene from bee gut bacteria was cloned into Escherichia coli. All strains of the core bee gut species, Snodgrassella alvi, encode a sensitive class I EPSPS, and reduction in S. alvi levels was a consistent experimental result. However, some S. alvi strains appear to possess an alternative mechanism of glyphosate resistance. Thus, exposure of bees to glyphosate can perturb their beneficial gut microbiota, potentially affecting bee health and their effectiveness as pollinators. FULL TEXT

Mesnage et al., 2017

Mesnage, Robin, & Antoniou, Michael N, “Ignoring Adjuvant Toxicity Falsifies the Safety Profile of Commercial Pesticides,” Frontiers in Public Health, 2017, 5, 361. DOI: 10.3389/fpubh.2017.00361.

ABSTRACT:

Commercial formulations of pesticides are invariably not single ingredients. Instead they are cocktails of chemicals, composed of a designated pesticidal “active principle” and “other ingredients,” with the latter collectively also known as “adjuvants.” These include surfactants, antifoaming agents, dyes, etc. Some adjuvants are added to influence the absorption and stability of the active principle and thus promote its pesticidal action. Currently, the health risk assessment of pesticides in the European Union and in the United States focuses almost exclusively on the stated active principle. Nonetheless, adjuvants can also be toxic in their own right with numerous negative health effects having been reported in humans and on the environment. Despite the known toxicity of adjuvants, they are regulated differently from active principles, with their toxic effects being generally ignored. Adjuvants are not subject to an acceptable daily intake, and they are not included in the health risk assessment of dietary exposures to pesticide residues. Here, we illustrate this gap in risk assessment by reference to glyphosate, the most used pesticide active ingredient. We also investigate the case of neonicotinoid insecticides, which are strongly suspected to be involved in bee and bumblebee colony collapse disorder. Authors of studies sometimes use the name of the active principle (for example glyphosate) when they are testing a commercial formulation containing multiple (active principle plus adjuvant) ingredients. This results in confusion in the scientific literature and within regulatory circles and leads to a misrepresentation of the safety profile of commercial pesticides. Urgent action is needed to lift the veil on the presence of adjuvants in food and human bodily fluids, as well as in the environment (such as in air, water, and soil) and to characterize their toxicological properties. This must be accompanied by regulatory precautionary measures to protect the environment and general human population from some toxic adjuvants that are currently missing from risk assessments. FULL TEXT

Caballero et al., 2018

Caballero, M., Amiri, S., Denney, J. T., Monsivais, P., Hystad, P., & Amram, O., “Estimated Residential Exposure to Agricultural Chemicals and Premature Mortality by Parkinson’s Disease in Washington State,” International Journal of Environmental Research and Public Health, 2018, 15(12). DOI: 10.3390/ijerph15122885.

ABSTRACT:

The aim of this study was to examine the relationship between estimated residential exposure to agricultural chemical application and premature mortality from Parkinson’s disease (PD) in Washington State. Washington State mortality records for 2011(-)2015 were geocoded using residential addresses, and classified as having exposure to agricultural land-use within 1000 meters. Generalized linear models were used to explore the association between land-use associated with agricultural chemical application and premature mortality from PD. Individuals exposed to land-use associated with glyphosate had 33% higher odds of premature mortality than those that were not exposed (Odds Ratio (OR) = 1.33, 95% Confidence Intervals (CI) = 1.06(-)1.67). Exposure to cropland associated with all pesticide application (OR = 1.19, 95% CI = 0.98(-)1.44) or Paraquat application (OR = 1.22, 95% CI = 0.99(-)1.51) was not significantly associated with premature mortality from PD, but the effect size was in the hypothesized direction. No significant associations were observed between exposure to Atrazine (OR = 1.21, 95% CI = 0.84(-)1.74) or Diazinon (OR = 1.07, 95% CI = 0.85(-)1.34), and premature mortality from PD. The relationship between pesticide exposure and premature mortality aligns with previous biological, toxicological, and epidemiological findings. Glyphosate, the world’s most heavily applied herbicide, and an active ingredient in Roundup((R)) and Paraquat, a toxic herbicide, has shown to be associated with the odds of premature mortality from PD. FULL TEXT

Bailey et al., 2018

Bailey, D. C., Todt, C. E., Burchfield, S. L., Pressley, A. S., Denney, R. D., Snapp, I. B., Negga, R., Traynor, W. L., & Fitsanakis, V. A., “Chronic exposure to a glyphosate-containing pesticide leads to mitochondrial dysfunction and increased reactive oxygen species production in Caenorhabditis elegans,” Environmental Toxicology and Pharmacology, 2048, 57, 46-52. DOI: 10.1016/j.etap.2017.11.005.

ABSTRACT:

Glyphosate-containing herbicides are among the most widely-used in the world. Although glyphosate itself is relatively non-toxic, growing evidence suggests that commercial herbicide formulations may lead to increased oxidative stress and mitochondrial inhibition. In order to assess these mechanisms in vivo, we chronically (24h) exposed Caenorhabditis elegans to various concentrations of the glyphosate-containing herbicide TouchDown (TD). Following TD exposure, we evaluated the function of specific mitochondrial electron transport chain complexes. Initial oxygen consumption studies demonstrated inhibition in mid- and high-TD concentration treatment groups compared to controls. Results from tetramethylrhodamine ethyl ester and ATP assays indicated reductions in the proton gradient and ATP levels, respectively. Additional studies were designed to determine whether TD exposure resulted in increased reactive oxygen species (ROS) production. Data from hydrogen peroxide, but not superoxide or hydroxyl radical, assays showed statistically significant increases in this specific ROS. Taken together, these data indicate that exposure of Caenorhabditis elegans to TD leads to mitochondrial inhibition and hydrogen peroxide production. FULL TEXT

Wigle et al., 2008

Donald T. Wigle , Tye E. Arbuckle , Michelle C. Turner , Annie Bérubé , Qiuying Yang , Shiliang Liu & Daniel Krewski, “Epidemiologic Evidence of Relationships Between Reproductive and Child Health Outcomes and Environmental Chemical Contaminants,” Journal of Toxicology and Environmental Health, Part B, 11, 2008, DOI: 10.1080/10937400801921320

ABSTRACT:

This review summarizes the level of epidemiologic evidence for relationships between prenatal and/or early life exposure to environmental chemical contaminants and fetal, child, and adult health. Discussion focuses on fetal loss, intrauterine growth restriction, preterm birth, birth defects, respiratory and other childhood diseases, neuropsychological deficits, premature or delayed sexual maturation, and certain adult cancers linked to fetal or childhood exposures. Environmental exposures considered here include chemical toxicants in air, water, soil/house dust and foods (including human breast milk), and consumer products. Reports reviewed here included original epidemiologic studies (with at least basic descriptions of methods and results), literature reviews, expert group reports, meta-analyses, and pooled analyses. Levels of evidence for causal relationships were categorized as sufficient, limited, or inadequate according to predefined criteria. There was sufficient epidemiological evidence for causal relationships between several adverse pregnancy or child health outcomes and prenatal or childhood exposure to environmental chemical contaminants. These included prenatal high-level methylmercury (CH3Hg) exposure (delayed developmental milestones and cognitive, motor, auditory, and visual deficits), high-level prenatal exposure to polychlorinated biphenyls (PCBs), polychlorinated dibenzofurans (PCDFs), and related toxicants (neonatal tooth abnormalities, cognitive and motor deficits), maternal active smoking (delayed conception, preterm birth, fetal growth deficit [FGD] and sudden infant death syndrome [SIDS]) and prenatal environmental tobacco smoke (ETS) exposure (preterm birth), low-level childhood lead exposure (cognitive deficits and renal tubular damage), high-level childhood CH3Hg exposure (visual deficits), high-level childhood exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (chloracne), childhood ETS exposure (SIDS, new-onset asthma, increased asthma severity, lung and middle ear infections, and adult breast and lung cancer), childhood exposure to biomass smoke (lung infections), and childhood exposure to outdoor air pollutants (increased asthma severity). Evidence for some proven relationships came from investigation of relatively small numbers of children with high-dose prenatal or early childhood exposures, e.g., CH3Hg poisoning episodes in Japan and Iraq. In contrast, consensus on a causal relationship between incident asthma and ETS exposure came only recently after many studies and prolonged debate. There were many relationships supported by limited epidemiologic evidence, ranging from several studies with fairly consistent findings and evidence of dose-response relationships to those where 20 or more studies provided inconsistent or otherwise less than convincing evidence of an association. The latter included childhood cancer and parental or childhood exposures to pesticides. In most cases, relationships supported by inadequate epidemiologic evidence reflect scarcity of evidence as opposed to strong evidence of no effect. This summary points to three main needs: (1) Where relationships between child health and environmental exposures are supported by sufficient evidence of causal relationships, there is a need for (a) policies and programs to minimize population exposures and (b) population-based biomonitoring to track exposure levels, i.e., through ongoing or periodic surveys with measurements of contaminant levels in blood, urine and other samples. (2) For relationships supported by limited evidence, there is a need for targeted research and policy options ranging from ongoing evaluation of evidence to proactive actions. (3) There is a great need for population-based, multidisciplinary and collaborative research on the many relationships supported by inadequate evidence, as these represent major knowledge gaps. Expert groups faced with evaluating epidemiologic evidence of potential causal relationships repeatedly encounter problems in summarizing the available data. A major driver for undertaking such summaries is the need to compensate for the limited sample sizes of individual epidemiologic studies. Sample size limitations are major obstacles to exploration of prenatal, paternal, and childhood exposures during specific time windows, exposure intensity, exposure–exposure or exposure–gene interactions, and relatively rare health outcomes such as childhood cancer. Such research needs call for investments in research infrastructure, including human resources and methods development (standardized protocols, biomarker research, validated exposure metrics, reference analytic laboratories). These are needed to generate research findings that can be compared and subjected to pooled analyses aimed at knowledge synthesis.

Wijkstrom et al., 2018

Wijkstrom, Julia; Jayasumana, Channa; Dassanayake, Rajeewa; Priyawardane, Nalin; Godakanda, Nimali; Siribaddana, Sisira; Ring, Anneli; Hultenby, Kjell
Soderberg, Magnus; Elinder, Carl-Gustaf; Wernerson, Annika, “Morphological and clinical findings in Sri Lankan patients with chronic kidney disease of unknown cause (CKDu): Similarities and differences with Mesoamerican Nephropathy, PLoS One, 2018, 13:3, DOI:10.1371/journal.pone.0193056.

ABSTRACT:

In Sri Lanka, an endemic of chronic kidney disease of unknown origin (CKDu) is affecting rural communities. The endemic has similarities with Mesoamerican Nephropathy (MeN) in Central America, however it has not yet been clarified if the endemics are related diagnostic entities. We designed this study of kidney biopsies from patients with CKDu in Sri Lanka to compare with MeN morphology. Eleven patients with CKDu were recruited at the General Hospital, Polonnaruwa, using similar inclusion and exclusion criteria as our previous MeN studies. Inclusion criteria were 20-65 years of age and plasma creatinine 100-220 mumol/L. Exclusion criteria were diabetes mellitus, uncontrolled hypertension and albuminuria >1g/24h. Kidney biopsies, blood and urine samples were collected, and participants answered a questionnaire. Included participants were between 27-61 years of age and had a mean eGFR of 38+/-14 ml/min/1.73m2. Main findings in the biopsies were chronic glomerular and tubulointerstitial damage with glomerulosclerosis (8-75%), glomerular hypertrophy and mild to moderate tubulointerstitial changes. The morphology was more heterogeneous and interstitial inflammation and vascular changes were more common compared to our previous studies of MeN. In two patients the biopsies showed morphological signs of acute pyelonephritis but urine cultures were negative. Electrolyte disturbances with low levels of serum sodium, potassium, and/or magnesium were common. In the urine, only four patients displayed albuminuria, but many patients exhibited elevated alpha-1-microglobulin and magnesium levels. This is the first study reporting detailed biochemical and clinical data together with renal morphology, including electron microscopy, from Sri Lankan patients with CKDu. Our data show that there are many similarities in the biochemical and morphological profile of the CKDu endemics in Central America and Sri Lanka, supporting a common etiology. However, there are differences, such as a more mixed morphology, more interstitial inflammation and vascular changes in Sri Lankan patients. FULL TEXT

Jayasumana, 2015b

Jayasumana C, Paranagama P, Agampodi S, Wijewardane C, Gunatilake S, Siribaddana S, “Drinking well water and occupational exposure to Herbicides is associated with chronic kidney disease in Padavi-Sripura, Sri Lanka,” 2015, Environmental Health, 14:6, DOI:10.1186/1476-069X-14-6.

ABSTRACT:

BACKGROUND: The chronic kidney disease of unknown etiology (CKDu) among paddy farmers in was first reported in 1994 and has now become most important public health issue in dry zone of Sri Lanka. The objective was to identify risk factors associated with the epidemic in an area with high prevalence.

METHODS: A case control study was carried out in Padavi-Sripura hospital in Trincomalee district. CKDu patients were defined using health ministry criteria. All confirmed cases (N = 125) fulfilling the entry criteria were recruited to the study. Control selection (N = 180) was done from people visiting the hospital for CKDu screening. Socio-demographic and data related to usage of applying pesticides and fertilizers were studied. Drinking water was also analyzed using ICP-MS and ELISA to determine the levels of metals and glyphosate.

RESULTS: Majority of patients were farmers (N = 107, 85.6%) and were educated up to ‘Ordinary Level’ (N = 92, 73.6%). We specifically analyzed for the effect modification of, farming by sex, which showed a significantly higher risk for male farmers with OR 4.69 (95% CI 1.06-20.69) in comparison to their female counterparts. In the multivariable analysis the highest risk for CKDu was observed among participants who drank well water (OR 2.52, 95% CI 1.12-5.70) and had history of drinking water from an abandoned well (OR 5.43, 95% CI 2.88-10.26) and spray glyphosate (OR 5.12, 95% CI 2.33-11.26) as a pesticide. Water analysis showed significantly higher amount of hardness, electrical conductivity and glyphosate levels in abandoned wells. In addition Ca, Mg, Ba, Sr, Fe, Ti, V and Sr were high in abandoned wells. Surface water from reservoirs in the endemic area also showed contamination with glyphosate but at a much lower level. Glyphosate was not seen in water samples in the Colombo district.

CONCLUSION: The current study strongly favors the hypothesis that CKDu epidemic among farmers in dry zone of Sri Lanka is associated with, history of drinking water from a well that was abandoned. In addition, it is associated with spraying glyphosate and other pesticides in paddy fields. Farmers do not use personnel protective equipments and wears scanty clothing due to heat when spraying pesticides. FULL TEXT

Bradman et al., 2013

Bradman, Asa; Kogut, Katherine; Eisen, Ellen A; Jewell, Nicholas P; Quiros-Alcala, Lesliam; Castorina, Rosemary; Chevrier, Jonathan; Holland, Nina T;  Barr, Dana Boyd; Kavanagh-Baird, Geri; Eskenazi, Brenda, “Variability of organophosphorous pesticide metabolite levels in spot and 24-hr urine samples collected from young children during 1 week,” Environmental Health Perspectives, 2013, 121:118-124. DOI:10.1289/ehp.1104808.

ABSTRACT:

BACKGROUND: Dialkyl phosphate (DAP) metabolites in spot urine samples are frequently used to characterize children’s exposures to organophosphorous (OP) pesticides. However, variable exposure and short biological half-lives of OP pesticides could result in highly variable measurements, leading to exposure misclassification.

OBJECTIVE: We examined within- and between-child variability in DAP metabolites in urine samples collected during 1 week.

METHODS: We collected spot urine samples over 7 consecutive days from 25 children (3-6 years of age). On two of the days, we collected 24-hr voids. We assessed the reproducibility of urinary DAP metabolite concentrations and evaluated the sensitivity and specificity of spot urine samples as predictors of high (top 20%) or elevated (top 40%) weekly average DAP metabolite concentrations.

RESULTS: Within-child variance exceeded between-child variance by a factor of two to eight, depending on metabolite grouping. Although total DAP concentrations in single spot urine samples were moderately to strongly associated with concentrations in same-day 24-hr samples (r approximately 0.6-0.8, p < 0.01), concentrations in spot samples collected > 1 day apart and in 24-hr samples collected 3 days apart were weakly correlated (r approximately -0.21 to 0.38). Single spot samples predicted high (top 20%) and elevated (top 40%) full-week average total DAP excretion with only moderate sensitivity ( approximately 0.52 and approximately 0.67, respectively) but relatively high specificity ( approximately 0.88 and approximately 0.78, respectively).

CONCLUSIONS: The high variability we observed in children’s DAP metabolite concentrations suggests that single-day urine samples provide only a brief snapshot of exposure. Sensitivity analyses suggest that classification of cumulative OP exposure based on spot samples is prone to type 2 classification errors.  FULL TEXT

Bradman et al., 2003

Bradman A, Barr DB, Claus Henn BG, Drumheller T, Curry C, Eskenazi B, “Measurement of pesticides and other toxicants in amniotic fluid as a potential biomarker of prenatal exposure: a validation study,” Environmental Health Perspectives, 2003, 111:1779-1782. DOI:10.1289/ehp.6259.

ABSTRACT:

Prenatal pesticide exposures may adversely affect children’s health. However, exposure and health research is hampered by the lack of reliable fetal exposure data. No studies have been published that report measurements of commonly used nonpersistent pesticides in human amniotic fluid, although recent studies of pesticides in urine from pregnant women and in meconium indicate that fetuses are exposed to these chemicals. Amniotic fluid collected during amniocentesis is the only medium available to characterize direct fetal exposures early in pregnancy (approximately 18 weeks of gestation). As a first step in validating this exposure biomarker, we collected 100 amniotic fluid samples slated for disposal and evaluated analytical methods to measure organophosphate and carbamate pesticides and metabolites, synthetic pyrethroid metabolites, herbicides, and chlorinated phenolic compounds. The following six phenols were detected (detection frequency): 1- and 2-naphthol (70%), 2,5-dichlorophenol (55%), carbofuranphenol (5%), ortho-phenylphenol (30%), and pentachlorophenol (15%), with geometric mean concentrations of 0.72, 0.39, 0.12, 0.13, and 0.23 microg/L, respectively, for positive values. The organophosphate metabolites diethylphosphate and dimethylphosphate were detected in two (10%) samples, and dimethylthiophosphate was detected in one (5%) sample, with geometric mean concentrations of 0.31, 0.32, and 0.43 microg/L, respectively, for positive values. These levels are low compared with levels reported in urine, blood, and meconium in other studies, but indicate direct exposures to the young fetus, possibly during critical periods of development. Results of this pilot study suggest that amniotic fluid offers a unique opportunity to investigate fetal exposures and health risks.  FULL TEXT

Back To Top