Bibliography Tag: pesticide use

Benbrook and Benbrook, 2021

Benbrook, Charles, & Benbrook, Rachel (2021). “A minimum data set for tracking changes in pesticide use.” In R. Mesnage & J. Zaller (Eds.), Herbicides: Elsevier and RTI Press.

ABSTRACT:

A frequently asked but deceptively simple question often arises about pesticide use on a given farm or crop: Is pesticide use going up, down, or staying about the same? Where substantial changes in pesticide use are occurring, it is also important to understand the factors driving change. These might include more or fewer hectares planted, a change in the crop mix, a higher or lower percentage of hectares treated, or higher or lower rates of application and/or number of applications. Or, it might arise from a shift to other pesticides applied at a higher or lower rate and/or lessened or greater reliance on nonpesticidal strategies and integrated pest management (IPM). Questions about whether pesticide use is changing and why arise for a variety of reasons. Rising use typically increases farmer costs and cuts into profit margins. It generally raises the risk of adverse environmental and/or public health outcomes. It can accelerate the emergence and spread of organisms resistant to applied pesticides. If the need to spray more continues year after year for long enough, farming systems become unsustainable. Lessened reliance on and use of pesticides, on the other hand, are typically brought about and can only be sustained by incrementally more effective prevention-based biointensive IPM systems (bioIPM).1–3 Fewer pesticide applications and fewer pounds/kilograms of active ingredient applied reduce the impacts on nontarget organisms and provide space for beneficial organisms and biodiversity to flourish. Such systems reduce the odds of significant crop loss in years when conditions undermine the efficacy of control measures, leading to spikes in pest populations and the risk of economically meaningful loss of crop yield and/or quality. FULL TEXT


Benbrook et al., 2021

Benbrook, Charles, Kegley, Susan, & Baker, Brian; “Organic Farming Lessens Reliance on Pesticides and Promotes Public Health by Lowering Dietary Risks;” Agronomy, 2021, 11(7); DOI: 10.3390/agronomy11071266.

ABSTRACT:

Organic agriculture is a production system that relies on prevention, ecological processes, biodiversity, mechanical processes, and natural cycles to control pests and maintain productivity. Pesticide use is generally limited or absent in organic agroecosystems, in contrast with non-organic (conventional) production systems that primarily rely on pesticides for crop protection. Significant differences in pesticide use between the two production systems markedly alter the relative dietary exposure and risk levels and the environmental impacts of pesticides. Data are presented on pesticide use on organic and non-organic farms for all crops and selected horticultural crops. The relative dietary risks that are posed by organic and non-organic food, with a focus on fresh produce, are also presented and compared. The results support the notion that organic farms apply pesticides far less intensively than conventional farms, in part because, over time on well-managed organic farms, pest pressure falls when compared to the levels on nearby conventional farms growing the same crops. Biopesticides are the predominant pesticides used in organic production, which work by a non-toxic mode of action, and pose minimal risks to human health and the environment. Consequently, eating organic food, especially fruits and vegetables, can largely eliminate the risks posed by pesticide dietary exposure. We recommend ways to lower the pesticide risks by increased adoption of organic farming practices and highlight options along organic food supply chains to further reduce pesticide use, exposures, and adverse worker and environmental impacts. FULL TEXT


Toda et al., 2021

Toda, Mitsuru, Beer, Karlyn D., Kuivila, Kathryn M., Chiller, Tom M., & Jackson, Brendan R.; “Trends in Agricultural Triazole Fungicide Use in the United States, 1992–2016 and Possible Implications for Antifungal-Resistant Fungi in Human Disease;” Environmental Health Perspectives, 2021, 129(5); DOI: 10.1289/ehp7484.

ABSTRACT:

BACKGROUND: The fungus Aspergillus fumigatus (A. fumigatus) is the leading cause of invasive mold infections, which cause severe disease and death in immunocompromised people. Use of triazole antifungal medications in recent decades has improved patient survival; however, triazole-resistant infections have become common in parts of Europe and are emerging in the United States. Triazoles are also a class of fungicides used in plant agriculture, and certain triazole-resistant A. fumigatus strains found causing disease in humans have been linked to environmental fungicide use.

OBJECTIVES: We examined U.S. temporal and geographic trends in the use of triazole fungicides using U.S. Geological Survey agricultural pesticide use estimates.

DISCUSSION: Based on our analysis, overall tonnage of triazole fungicide use nationwide was relatively constant during 1992–2005 but increased >4-fold during 2006–2016 to 2:9 million kg in 2016. During 1992–2005, triazole fungicide use occurred mostly in orchards and grapes, wheat, and other crops, but recent increases in use have occurred primarily in wheat, corn, soybeans, and other crops, particularly in Midwest and Southeast states. We conclude that, given the chemical similarities between triazole fungicides and triazole antifungal drugs used in human medicine, increased monitoring for environmental and clinical triazole resistance in A. fumigatus would improve overall understanding of these interactions, as well as help identify strategies to mitigate development and spread of resistance. FULL TEXT


Blair and Zahm, 1993

Blair, A., & Zahm, S. H.; “Patterns of pesticide use among farmers: implications for epidemiologic research;” Epidemiology, 1993, 4(1), 55-62; DOI: 10.1097/00001648-199301000-00011.

ABSTRACT:

Epidemiologic studies of farmers have linked pesticides with certain cancers. Information on exposures from many of these studies was obtained by interview of farmers or their next-of-kin. The reliability and validity of data on pesticide use obtained by recall, often years after the event, have been questioned. Pesticide use, however, is an integral component in most agricultural operations, and the farmers’ knowledge and recall of chemicals used may be better than for many other occupations. Contrary to general belief, many farmers typically use only a few pesticides during their lifetimes and make only a few applications per year. Data from U.S. Department of Agriculture surveys indicate that herbicides are applied to wheat, corn, soybeans, and cotton and that application of insecticides to corn averages two or fewer times per year. In epidemiologic studies at the National Cancer Institute, the proportion of farmers ever reporting lifetime use of five or more different chemicals was 7% for insecticides and 20% for herbicides. Surrogate respondents have often been used in epidemiologic studies of cancer; they are able to recall pesticide use with less detail than the farmers themselves. The pesticides reported by surrogates were the same as reported by subjects themselves, but with less frequency. Comparison of reporting by cases and controls provided no evidence of case-response (differential) bias; thus, inaccurate recall of pesticide use by subjects or surrogates would tend to diminish risk estimates and dilute exposure-response gradients. FULL TEXT


Mahler et al., 2021

Mahler, B. J., Nowell, L. H., Sandstrom, M. W., Bradley, P. M., Romanok, K. M., Konrad, C. P., & Van Metre, P. C.; “Inclusion of Pesticide Transformation Products Is Key to Estimating Pesticide Exposures and Effects in Small U.S. Streams;” Environmental Science & Technology, 2021; DOI: 10.1021/acs.est.0c06625.

ABSTRACT:

Improved analytical methods can quantify hundreds of pesticide transformation products (TPs), but understanding of TP occurrence and potential toxicity in aquatic ecosystems remains limited. We quantified 108 parent pesticides and 116 TPs in more than 3700 samples from 442 small streams in mostly urban basins across five major regions of the United States. TPs were detected nearly as frequently as parents (90 and 95% of streams, respectively); 102 TPs were detected at least once and 28 were detected in >20% samples in at least one region-TPs of 9 herbicides, 2 fungicides (chlorothalonil and thiophanate-methyl), and 1 insecticide (fipronil) were the most frequently detected. TPs occurred commonly during baseflow conditions, indicating chronic environmental TP exposures to aquatic organisms and the likely importance of groundwater as a TP source. Hazard quotients based on acute aquatic-life benchmarks for invertebrates and nonvascular plants and vertebrate-centric molecular endpoints (sublethal effects) quantify the range of the potential contribution of TPs to environmental risk and highlight several TP exposure-response data gaps. A precautionary approach using equimolar substitution of parent benchmarks or endpoints for missing TP benchmarks indicates that potential aquatic effects of pesticide TPs could be underestimated by an order of magnitude or more. FULL TEXT


Tang et al., 2021

Tang, Fiona H. M., Lenzen, Manfred, McBratney, Alexander, & Maggi, Federico; “Risk of pesticide pollution at the global scale;” Nature Geoscience, 2021; DOI: 10.1038/s41561-021-00712-5.

ABSTRACT:

Pesticides are widely used to protect food production and meet global food demand but are also ubiquitous environmental pollutants, causing adverse effects on water quality, biodiversity and human health. Here we use a global database of pesticide applications and a spatially explicit environmental model to estimate the world geography of environmental pollution risk caused by 92 active ingredients in 168 countries. We considered a region to be at risk of pollution if pesticide residues in the environment exceeded the no-effect concentrations, and to be at high risk if residues exceeded this by three orders of magnitude. We find that 64% of global agricultural land (approximately 24.5 million km2) is at risk of pesticide pollution by more than one active ingredient, and 31% is at high risk. Among the high-risk areas, about 34% are in high-biodiversity regions, 5% in water-scarce areas and 19% in low- and lower-middle-income nations. We identify watersheds in South Africa, China, India, Australia and Argentina as high-concern regions because they have high pesticide pollution risk, bear high biodiversity and suffer from water scarcity. Our study expands earlier pesticide risk assessments as it accounts for multiple active ingredients and integrates risks in different environmental compartments at a global scale.  FULL TEXT


Epstein and Zhang, 2014

Epstein, Lynn, & Zhang, Minghua. (2014). The Impact of Integrated Pest Management Programs on Pesticide Use in California, USA. In R. Peshin & D. Pimentel (Eds.), Integrated Pest Management (pp. 173-200): Springer.

ABSTRACT:

Integrated Pest Management (IPM) is often promoted to farmers as a method that can provide the most economical, sustained disease and pest control, but promoted to the public as a method to reduce agricultural pesticide use. California has a public infrastructure for supporting IPM research and implementation, largely through the University of California IPM program. California’s Department of Pesticide Regulation’s Pesticide Use Reports provide a system to track pesticide use state-wide. In practice, IPM in California is extremely pesticide-dependent, particularly in weed control and in agricultural production systems that rely on soil fumigation, such as strawberries. During our study period between 1993 and 2010, California had a decrease in use of 88 % of the highly-used pesticides listed for regulatory concern for human health. However, most of these pesticides were replaced with other chemicals rather than with non-chemical methods. We feature several case studies that illustrate key issues in California IPM: the limited progress in meeting Montreal Protocol guidelines for methyl bromide phase-out due to critical use exemptions for strawberry producers; a successful IPM program to decrease use of dormant-season organophosphates that are important water pollutants; the increase in use of neonicotinoid insecticides, which might have a role in the current bee colony collapse disorder; and the limited use of all of the commercialized microbial biocontrol agents except for Bacillus thuringiensis. FULL TEXT