skip to Main Content

Bibliography Tag: pregnancy

Luke et al., 2021

Luke, A. A., Huang, K., Lindley, K. J., Carter, E. B., & Joynt Maddox, K. E.; “Severe Maternal Morbidity, Race, and Rurality: Trends Using the National Inpatient Sample, 2012-2017;” J Womens Health (Larchmt), 2021, 30(6), 837-847; DOI: 10.1089/jwh.2020.8606.


BACKGROUND: Severe maternal morbidity is related to maternal mortality and an important measure of maternal health outcomes. Our objective was to evaluate differences in rates of severe maternal morbidity and mortality (SMM&M) by rurality and race, and examine these trends over time.

MATERIALS AND METHODS: It involves the retrospective cohort study of delivery hospitalizations from January 1, 2012 to December 31, 2017 from the National Inpatient Sample. We identified delivery hospitalizations using International Classification of Diseases, Ninth Revision, Clinical Modification and International Classification of Diseases, Tenth Revision, Clinical Modification diagnosis and procedure codes and diagnosis-related groups. We used hierarchical regression models controlling for insurance status, income, age, comorbidities, and hospital characteristics to model odds of SMM&M.

RESULTS: The eligible cohort contained 4,494,089 delivery hospitalizations. Compared with women from small cities, women in the most urban and most rural areas had higher odds of SMM&M (urban adjusted odds ratio [aOR] 1.09, 95% confidence interval [1.04-1.14]; noncore rural aOR 1.24 [1.18-1.31]). Among White women, the highest odds of SMM&M were in noncore rural counties (aOR 1.20 [1.12-1.27]), while among Black women the highest odds were in urban (aOR 1.21 [1.11-1.31]) and micropolitan areas (aOR 1.36 [1.19-1.57]). Findings were similar for Hispanic, Native American, and other race women. Rates of SMM&M increased from 2012 to 2017, especially among urban patients.

CONCLUSIONS: Women in the most urban and most rural counties experienced higher odds of SMM&M, and these relationships differed by race. These findings suggest particular areas for clinical leaders and policymakers to target to reduce geographic and racial disparities in maternal outcomes.

Harris et al., 2015

Harris, DE, Aboueissa, N Baugh, & Sarton, C; “Impact of rurality on maternal and infant health indicators and outcomes in Maine;” Rural and Remote Health, 2015, 15(3278).


INTRODUCTION: Rural residents may face health challenges related to geographic barriers to care, physician shortages, poverty, lower educational attainment, and other demographic factors. In maternal and child health, these disparities may be evidenced by the health risks and behaviors of new mothers, the health of infants born to these mothers, and the care received by both mothers and infants.

MEHTODS: To determine the impact of rurality on maternal and child health in Maine, USA, 11 years of data (2000–2010) for the state of Maine from the Pregnancy Risk Assessment Monitoring System (PRAMS) project were analyzed. PRAMS is a national public health surveillance system that uses questionnaires to survey women who had delivered live infants in the previous 2–4 months. Using a geographic information system, each questionnaire response was assigned a rurality tier (urban, suburban, large rural town, or isolated rural community) based on the rural–urban commuting area code of the town of residence of the mother. Results from the four rurality tiers were compared using the survey procedures in Statistical Analysis Software to adjust for the complex sampling strategy of the PRAMS dataset. Means (for continuous variables) and percentages (for categorical variables) were calculated for each rurality tier, along with 95% confidence intervals. Significant differences between rurality tiers were tested for using F-tests or χ2 tests. If significant differences between rurality tiers existed (p<0.05), specific tiers were judged to be different from each other if their 95% confidence intervals did not overlap.

RESULTS: A total of 12 600 mothers responded to the PRAMS questionnaire during the study period. Compared to mothers from more urban areas, rural mothers were younger (10.5% of mothers from isolated rural areas were teenagers compared to 6.2% of mothers from urban areas), less well educated, less likely to be married, and more likely to live in lower income households (39.6% of isolated rural mothers had household incomes ≤US$20 000/year vs 28.8% of urban mothers). Rural mothers had higher prepregnancy body mass indexes (BMIs; average BMI 26.1 for isolated rural women vs 25.3 for urban women) and were more likely to smoke but less likely to drink alcohol (both before and during pregnancy). Compared to mothers from more urban areas, rural mothers were not sure they were pregnant until a later gestational age but received prenatal care just as early and were just as likely to receive prenatal care as early as they wished. There were no differences among rurality tiers in Caesarean section rates, rates of premature births (<37 weeks gestation), or rates of underweight births (<2500 g). However infants born to rural mothers were less likely to be breastfed (52.9% of isolated rural vs 60.9% of urban infants breast fed for ≥8 weeks).

CONCLUSIONS: These results show that, while rural women face significant demographic and behavior challenges, their access to prenatal care, the care they receive while pregnant, and the outcomes of their pregnancies are similar to those of urban women. These results highlight areas where focused pre-pregnancy and prenatal education may improve maternal and child health in rural Maine.

Milesi et al., 2021

Milesi, M. M., Lorenz, V., Durando, M., Rossetti, M. F., & Varayoud, J. “Glyphosate Herbicide: Reproductive Outcomes and Multigenerational Effects.” Frontiers in Endocrinology, 12. 2021; DOI:10.3389/fendo.2021.672532.


Glyphosate base herbicides (GBHs) are the most widely applied pesticides in the world and are mainly used in association with GBH-tolerant crop varieties. Indiscriminate and negligent use of GBHs has promoted the emergence of glyphosate resistant weeds, and consequently the rise in the use of these herbicides. Glyphosate, the active ingredient of all GBHs, is combined with other chemicals known as co-formulants that enhance the herbicide action. Nowadays, the safety of glyphosate and its formulations remain to be a controversial issue, as evidence is not conclusive whether the adverse effects are caused by GBH or glyphosate, and little is known about the contribution of co-formulants to the toxicity of herbicides. Currently, alarmingly increased levels of glyphosate have been detected in different environmental matrixes and in foodstuff, becoming an issue of social concern. Some in vitro and in vivo studies have shown that glyphosate and its formulations exhibit estrogen-like properties, and growing evidence has indicated they may disrupt normal endocrine function, with adverse consequences for reproductive health. Moreover, multigenerational effects have been reported and epigenetic mechanisms have been proved to be involved in the alterations induced by the herbicide. In this review, we provide an overview of: i) the routes and levels of human exposure to GBHs, ii) the potential estrogenic effects of glyphosate and GBHs in cell culture and animal models, iii) their long-term effects on female fertility and mechanisms of action, and iv) the consequences on health of successive generations. FULL TEXT

Crump et al., 2021

Crump, Casey, Groves, Alan, Sundquist, Jan, & Sundquist, Kristina; “Association of Preterm Birth With Long-term Risk of Heart Failure Into Adulthood;” JAMA Pediatrics, 2021, 175(7), 689-697; DOI: 10.1001/jamapediatrics.2021.0131.


Preterm birth has been associated with increased risk of heart failure (HF) early in life, but its association with new-onset HF in adulthood appears to be unknown. To determine whether preterm birth is associated with increased risk of HF from childhood into mid-adulthood in a large population-based cohort. This national cohort study was conducted in Sweden with data from 1973 through 2015. All singleton live births in Sweden during 1973 through 2014 were included. Gestational age at birth, identified from nationwide birth records. Heart failure, as identified from inpatient and outpatient diagnoses through 2015. Cox regression was used to determine hazard ratios (HRs) for HF associated with gestational age at birth while adjusting for other perinatal and maternal factors. Cosibling analyses assessed for potential confounding by unmeasured shared familial (genetic and/or environmental) factors. A total of 4 193 069 individuals were included (maximum age, 43 years; median age, 22.5 years). In 85.0 million person-years of follow-up, 4158 persons (0.1%) were identified as having HF (median [interquartile range] age, 15.4 [28.0] years at diagnosis). Preterm birth (gestational age &lt;37 weeks) was associated with increased risk of HF at ages younger than 1 year (adjusted HR [aHR], 4.49 [95% CI, 3.86-5.22]), 1 to 17 years (aHR, 3.42 [95% CI, 2.75-4.27]), and 18 to 43 years (aHR, 1.42 [95% CI, 1.19-1.71]) compared with full-term birth (gestational age, 39-41 weeks). At ages 18 through 43 years, the HRs further stratified by gestational age were 4.72 (95% CI, 2.11-10.52) for extremely preterm births (22-27 weeks), 1.93 (95% CI, 1.37-2.71) for moderately preterm births (28-33 weeks), 1.24 (95% CI, 1.00-1.54) for late preterm births (34-36 weeks), and 1.09 (95% CI, 0.97-1.24) for early term births (37-38 weeks). The corresponding HF incidence rates (per 100 000 person-years) at ages 18 through 43 years were 31.7, 13.8, 8.7, and 7.3, respectively, compared with 6.6 for full-term births. These associations persisted when excluding persons with structural congenital cardiac anomalies. The associations at ages 18 through 43 years (but not &lt;18 years) appeared to be largely explained by shared determinants of preterm birth and HF within families. Preterm birth accounted for a similar number of HF cases among male and female individuals. In this large national cohort, preterm birth was associated with increased risk of new-onset HF into adulthood. Survivors of preterm birth may need long-term clinical follow-up into adulthood for risk reduction and monitoring for HF.

Maurice et al., 2021

Maurice C, Dalvai M, Lambrot R, Deschênes A, Scott-Boyer M-P, McGraw S, Chan D, Côté N, Ziv-Gal A, Flaws JA, Droit A, Trasler J, Kimmins S, Bailey JL. “Early-Life Exposure to Environmental Contaminants Perturbs the Sperm Epigenome and Induces Negative Pregnancy Outcomes for Three Generations via the Paternal Lineage.” Epigenomes. 2021, 5(2):10; DOI:10.3390/epigenomes5020010


Due to the grasshopper effect, the Arctic food chain in Canada is contaminated with persistent organic pollutants (POPs) of industrial origin, including polychlorinated biphenyls and organochlorine pesticides. Exposure to POPs may be a contributor to the greater incidence of poor fetal growth, placental abnormalities, stillbirths, congenital defects and shortened lifespan in the Inuit population compared to non-Aboriginal Canadians. Although maternal exposure to POPs is well established to harm pregnancy outcomes, paternal transmission of the effects of POPs is a possibility that has not been well investigated. We used a rat model to test the hypothesis that exposure to POPs during gestation and suckling leads to developmental defects that are transmitted to subsequent generations via the male lineage. Indeed, developmental exposure to an environmentally relevant Arctic POPs mixture impaired sperm quality and pregnancy outcomes across two subsequent, unexposed generations and altered sperm DNA methylation, some of which are also observed for two additional generations. Genes corresponding to the altered sperm methylome correspond to health problems encountered in the Inuit population. These findings demonstrate that the paternal methylome is sensitive to the environment and that some perturbations persist for at least two subsequent generations. In conclusion, although many factors influence health, paternal exposure to contaminants plays a heretofore-underappreciated role with sperm DNA methylation contributing to the molecular underpinnings involved. FULL TEXT

Ferguson et al., 2019

Ferguson, K. K., Rosario, Z., McElrath, T. F., Velez Vega, C., Cordero, J. F., Alshawabkeh, A., & Meeker, J. D.; “Demographic risk factors for adverse birth outcomes in Puerto Rico in the PROTECT cohort;” Plos One, 2019, 14(6), e0217770; DOI: 10.1371/journal.pone.0217770.


Preterm birth is a major public health problem, especially in Puerto Rico where the rates are among the highest observed worldwide, reaching 18% in 2011. The Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) study is an ongoing investigation of environmental factors that contribute to this condition. In the present analysis, we sought to examine common risk factors for preterm birth and other adverse birth outcomes which have not been characterized previously in this unique population. Pregnant women from the PROTECT cohort are recruited from the heavily contaminated Northern coast of the island of Puerto Rico and are free of pre-existing conditions like diabetes. We examined associations between basic demographic, behavioral (e.g., tobacco and alcohol use), and pregnancy (e.g., season and year of delivery) characteristics as well as municipality of residence in relation to preterm birth (<37 weeks gestation), postterm birth (>/=41 weeks gestation), and small and large for gestational age in univariate and multivariate logistic regression models. Between 2011 and 2017, 1028 live singleton births were delivered as part of the PROTECT cohort. Of these, 107 (10%) were preterm. Preterm birth rates were higher among women with low socioeconomic status, as indicated by education level and income, and among women with high pre-pregnancy body mass index (BMI). Odds ratios of small for gestational age delivery were higher for women who reported tobacco use in pregnancy and lower for women who delivered in the hurricane and dengue season (July-October). Overall, in pregnant women residing in Puerto Rico, socioeconomic status was associated with preterm birth but few other factors were associated with this or other adverse outcomes of pregnancy. Research to understand environmental factors that could be contributing to the preterm birth epidemic in Puerto Rico is necessary. FULL TEXT

Silver et al., 2021

Silver, M. K., Fernandez, J., Tang, J., McDade, A., Sabino, J., Rosario, Z., Velez Vega, C., Alshawabkeh, A., Cordero, J. F., & Meeker, J. D.; “Prenatal Exposure to Glyphosate and Its Environmental Degradate, Aminomethylphosphonic Acid (AMPA), and Preterm Birth: A Nested Case-Control Study in the PROTECT Cohort (Puerto Rico);” Environmental Health Perspectives, 2021, 129(5), 57011; DOI: 10.1289/EHP7295.


BACKGROUND: Glyphosate (GLY) is the most heavily used herbicide in the world. Despite nearly ubiquitous exposure, few studies have examined prenatal GLY exposure and potentially adverse pregnancy outcomes. Preterm birth (PTB) is a risk factor for neonatal mortality and adverse health effects in childhood.

OBJECTIVES: We examined prenatal exposure to GLY and a highly persistent environmental degradate of GLY, aminomethylphosphonic acid (AMPA), and odds of PTB in a nested case-control study within the ongoing Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) pregnancy cohort in northern Puerto Rico.

METHODS: GLY and AMPA in urine samples collected at 18+/-2 (Visit 1) and 26+/-2 (Visit 3) wk gestation (53 cases/194 randomly selected controls) were measured using gas chromatography tandem mass spectrometry. Multivariable logistic regression was used to estimate associations with PTB (delivery <37wk completed gestation).

RESULTS: Detection rates in controls were 77.4% and 77.5% for GLY and 52.8% and 47.7% for AMPA, and geometric means (geometric standard deviations) were 0.44 (2.50) and 0.41 (2.56) mug/L for GLY and 0.25 (3.06) and 0.20 (2.87) mug/L for AMPA, for Visits 1 and 3, respectively. PTB was significantly associated with specific gravity-corrected urinary GLY and AMPA at Visit 3, whereas associations with levels at Visit 1 and the Visits 1-3 average were largely null or inconsistent. Adjusted odds ratios (ORs) for an interquartile range increase in exposure at Visit 3 were 1.35 (95% CI: 0.99, 1.83) and 1.67 (95% CI: 1.26, 2.20) for GLY and AMPA, respectively. ORs for Visit 1 and the visit average were closer to the null.

DISCUSSION: Urine GLY and AMPA levels in samples collected near the 26th week of pregnancy were associated with increased odds of PTB in this modestly sized nested case-control study. Given the widespread use of GLY, multiple potential sources of AMPA, and AMPA’s persistence in the environment, as well as the potential for long-term adverse health effects in preterm infants, further investigation in other populations is warranted.


Kogevinas, 2021

Kogevinas, M.; “Glyphosate Exposure during Pregnancy and Preterm Birth (More Research Is Needed);” Environmental Health Perspectives, 2021, 129(5), 51301; DOI: 10.1289/EHP9428.


Not Available


Coullery et al., 2020

Coullery, R., Pacchioni, A. M., & Rosso, S. B.; “Exposure to glyphosate during pregnancy induces neurobehavioral alterations and downregulation of Wnt5a-CaMKII pathway;” Reproductive Toxicology, 2020, 96, 390-398; DOI: 10.1016/j.reprotox.2020.08.006.


Glyphosate-based formulations are the most popular herbicide used around the world. These herbicides are widely applied in agriculture to control weeds on genetically modified crops. Although there is much evidence showing that glyphosate-based herbicides induce toxic effect on reproductive and hepatic systems, and also cause oxidative damage on cells, studies from recent years revealed that the nervous system may represent a key target for their toxicity. In the present work, we evaluated the effect of glyphosate (without adjuvants) in neonate rats after gestational exposure. Particularly, we examined whether glyphosate during gestation affected the nervous system function at early development. Pregnant Wistar rats were treated with 24 or 35mg/kg of pure glyphosate every 48h and neurobehavioral studies were performed. Our results indicated that gestational exposure to glyphosate induced changes in reflexes development, motor activity and cognitive function, in a dose-dependent manner. To go further, we evaluated whether prenatal exposure to glyphosate affected the Ca(+2)-mediated Wnt non-canonical signaling pathway. Results indicated that embryos exposed to glyphosate showed an inhibition of Wnt5a-CaMKII signaling pathway, an essential cascade controlling the formation and integration of neural circuits. Taken together, these findings suggest that gestational exposure to glyphosate leads to a downregulation of Wnt/Ca(+2) pathway that could induce a developmental neurotoxicity evidenced by deficits at behavioral and cognitive levels in rat pups. FULL TEXT

O’Leary et al., 1970

O’Leary, James A., Davies, John E., Edmundson, Walter F., & Reich, George A.; “Transplacental passage of pesticides;” American Journal of Obstetrics and Gynecology, 1970, 107(1), 65-68; DOI: 10.1016/s0002-9378(16)33891-1.


The levels of chlorinated hydrocarbon pesticides in blood and tissues of pregnant women have not been adequately studied, although it has been stated that DDT or its metabolites may be detected in most infants born in America today. The occurrence of these chemicals in neonates has been documented by Denes. For the most part, the biological effects of acute exposure to many pesticides are well known, although this is not true regarding chronic and subacute exposure. In addition, the chlorinated hydrocarbons have been shown to be powerful stimulators of the hepatic microsomal enzyme system:; and these effects remain to be determined. For this reason increased emphasis in this research area is advisable.

The application of gas chromatography and development of the electron capture detector have made possible the determination of levels of many pesticides in every tissue, thus opening new avenues of investigation. The data in this report are presented as an effort toward the clearer understanding of the possible effects of concentrations of pesticides in blood and other tissues during pregnancy, and represent conclusive evidence of the quantitative transfer of DDT and its metabolites to the fetus. The variables of maternal race and fetal maturity are considered. FULL TEXT

Back To Top