skip to Main Content

Bibliography Tag: pregnancy

Sathyanarayana et al., 2010

Sheela Sathyanarayana MD MPH, Olga Basso PhD, Catherine J. Karr MD PhD MS, Paula Lozano MD MPH, Michael Alavanja PhD, Dale P. Sandler PhD & Jane A. Hoppin ScD, “Maternal Pesticide Use and Birth Weight in the Agricultural Health Study,” Journal of Agromedicine, 15:2, 2010, DOI: 10.1080/10599241003622699

ABSTRACT:

Studies examining the association between maternal pesticide exposure and low birth weight yield conflicting results. The authors examined the association between maternal pesticide use and birth weight among women in the Agricultural Health Study, a large study of pesticide applicators and their spouses in Iowa and North Carolina. The authors evaluated self-reported pesticide use of 27 individual pesticides in relation to birth weight among 2246 farm women whose most recent singleton birth occurred within 5 years of enrollment (1993–1997). The authors used linear regression models adjusted for site, preterm birth, medical parity, maternal body mass index, height, and smoking. The results showed that mean infant birth weight was 3586 g (± 546 g), and 3% of the infants were low birth weight (<2500 g). First-trimester pesticide-related tasks were not associated with birth weight. Ever use of the pesticide carbaryl was associated with decreased birth weight (−82 g, 95% confidence interval [CI] = −132, −31). This study thus provides limited evidence about pesticide use as a modulator of birth weight. Overall, the authors observed no associations between birth weight and pesticide-related activities during early pregnancy; however, the authors have no data on temporal specificity of individual pesticide exposures prior to or during pregnancy and therefore cannot draw conclusions related to these exposure windows. Given the widespread exposure to pesticide products, additional evaluation of maternal pregnancy exposures at specific time windows and subsequent birth outcomes is warranted.

Sanin et al., 2009

Sanin LH, Carrasquilla G, Solomon KR, Cole DC, Marshall EJ., “Regional differences in time to pregnancy among fertile women from five Colombian regions with different use of glyphosate,” Journal of Toxicology and Environmental Health, Part A, 72: 15-16, 2009, DOI: 10.1080/15287390902929691

ABSTRACT:

The objective of this study was to test whether there was an association between the use of glyphosate when applied by aerial spray for the eradication of illicit crops (cocaine and poppy) and time to pregnancy (TTP) among fertile women. A retrospective cohort study (with an ecological exposure index) of first pregnancies was undertaken in 2592 fertile Colombian women from 5 regions with different uses of glyphosate. Women were interviewed regarding potential reproductive, lifestyle, and work history predictors of TTP, which was measured in months. Fecundability odds ratios (fOR) were estimated using a discrete time analogue of Cox’s proportional hazard model. There were differences in TTP between regions. In the final multivariate model, the main predictor was the region adjusted by irregular relationship with partner, maternal age at first pregnancy, and, marginally, coffee consumption and self-perception of water pollution. Boyaca, a region with traditional crops and. recently, illicit crops without glyphosate eradication spraying (manual eradication), displayed minimal risk and was the reference region. Other regions, including Sierra Nevada (control area, organic agriculture), Putumayo and Narino (illicit crops and intensive eradication spray program), and Valle del Cauca, demonstrated greater risk of longer TTP, with the highest risk for Valle del Cauca (fOR 0.15, 95% CI 0.12, 0.18), a sugar-cane region with a history of use of glyphosate and others chemicals for more than 30 yr. The reduced fecundability in some regions was not associated with the use of glyphosate for eradication spraying. The observed ecological differences remain unexplained and may be produced by varying exposures to environmental factors, history of contraceptive programs in the region, or psychological distress. Future studies examining these or other possible causes are needed.

Dallegrave et al., 2003

Eliane Dallegrave, Fabiana DiGiorgio Mantese, Ricardo Soares Coelho, Janaı´na Drawans Pereira, Paulo Roberto Dalsenter, Augusto Langeloh, “The teratogenic potential of the herbicide glyphosate-Roundup in Wistar rats,” Toxicology Letters, 142, 2003, DOI: 10.1016/S0378-4274(02)00483-6.

ABSTRACT:

The aim of this study was to assess the teratogenicity of the herbicide glyphosate-Roundup† (as commercialized in Brazil) to Wistar rats. Dams were treated orally with water or 500, 750 or 1000 mg/kg glyphosate from day 6 to 15 of pregnancy. Cesarean sections were performed on day 21 of pregnancy, and number of corpora lutea, implantation sites, living and dead fetuses, and resorptions were recorded. Weight and gender of the fetuses were determined, and fetuses
were examined for external malformations and skeletal alterations. The organs of the dams were removed and weighed. Results showed a 50% mortality rate for dams treated with 1000 mg/kg glyphosate. Skeletal alterations were observed in 15.4, 33.1, 42.0 and 57.3% of fetuses from the control, 500, 750 and 1000 mg/kg glyphosate groups, respectively. We may conclude that glyphosate-Roundup† is toxic to the dams and induces developmental retardation of the fetal
skeleton.  FULL TEXT

Parvez et al., 2018

S. Parvez, R. R. Gerona, C. Proctor, M. Friesen, J. L. Ashby, J. L. Reiter, Z. Lui, and P. D. Winchester, “Glyphosate exposure in pregnancy and shortened gestational length: a prospective Indiana birth cohort study,” Environmental Health, 17:23, March 9, 2018, DOI: 10.1186/s12940-018-0367-0.

ABSTRACT:

BACKGROUND: Glyphosate (GLY) is the most heavily used herbicide worldwide but the extent of exposure in human pregnancy remains unknown. Its residues are found in the environment, major crops, and food items that humans, including pregnant women, consume daily. Since GLY exposure in pregnancy may also increase fetal exposure risk, we designed a birth-cohort study to determine exposure frequency, potential exposure pathways, and associations with fetal growth indicators and pregnancy length.

METHOD: Urine and residential drinking water samples were obtained from 71 women with singleton pregnancies living in Central Indiana while they received routine prenatal care. GLY measurements were performed using liquid chromatography-tandem mass spectrometry. Demographic and survey information relating to food and water consumption, stress, and residence were obtained by questionnaire. Maternal risk factors and neonatal outcomes were abstracted from medical records. Correlation analyses were used to assess relationships of urine GLY levels with fetal growth indicators and gestational length.

RESULTS: The mean age of participants was 29 years, and the majority were Caucasian. Ninety three percent of the pregnant women had GLY levels above the limit of detection (0.1 ng/mL). Mean urinary GLY was 3.40 ng/mL (range 0.5–7.20 ng/mL). Higher GLY levels were found in women who lived in rural areas (p = 0.02), and in those who consumed > 24 oz. of caffeinated beverages per day (p = 0.004). None of the drinking water samples had detectable GLY levels. We observed no correlations with fetal growth indicators such as birth weight percentile and head circumference. However, higher GLY urine levels were significantly correlated with shortened gestational lengths (r = − 0.28, p = 0.02).

CONCLUSIONS: This is the first study of GLY exposure in US pregnant women using urine specimens as a direct measure of exposure. We found that > 90% of pregnant women had detectable GLY levels and that these levels correlated significantly with shortened pregnancy lengths. Although our study cohort was small and regional and had limited racial/ethnic diversity, it provides direct evidence of maternal GLY exposure and a significant correlation with shortened pregnancy. Further  investigations in a more geographically and racially diverse cohort would be necessary before these findings could be generalized. FULL TEXT

Donauer et al., 2016

Donauer, Stephanie, Mekibib Altaye, Yingying Xu, Heidi Sucharew, Paul Succop, Antonia M. Calafat, Jane C. Khoury, Bruce Lanphear, Kimberly Yolton, “An Observational Study to Evaluate Associations Between Low-Level Gestational Exposure to Organophosphate Pesticides and Cognition During Early Childhood,” American Journal of Epidemiology, 2016, 184:5.

ABSTRACT:

Prenatal exposure to organophosphate pesticides, which is ubiquitous, may be detrimental to neurological development. We examined 327 mother/infant pairs in Cincinnati, Ohio, between 2003 and 2006 to determine associations between prenatal exposure to organophosphate pesticides and neurodevelopment. Twice during pregnancy urinary concentrations of 6 common dialkylphosphates, nonspecific metabolites of organophosphate pesticides, were measured. Aggregate concentrations of diethylphosphates, dimethylphosphates, and total dialkylphosphates were calculated. Bayley Scales of Infant Development, Second Edition-Mental and Psychomotor Developmental indices were administered at ages 1, 2, and 3 years, the Clinical Evaluation of Language Fundamentals-Preschool, Second Edition, at age 4, and the Wechsler Preschool and Primary Scale of Intelligence, Third Edition, at age 5. Mothers with higher urinary total dialkylphosphate concentrations reported higher levels of socioeconomic status and increased fresh fruit and vegetable intake. We found no associations between prenatal exposure to organophosphate pesticides and cognition at 1-5 years of age. In our cohort, exposure to organophosphate pesticides during pregnancy was not associated with cognition during early childhood. It is possible that a higher socioeconomic status and healthier diet may protect the fetus from potential adverse associations with gestational organophosphate pesticide exposure, or that dietary exposure to the metabolites is innocuous and not an ideal measure of exposure to the parent compound.

Shelton et al., 2014

Janie F. Shelton, Estella M. Geraghty, Daniel J. Tancredi, Lora D. Delwiche, Rebecca J. Schmidt, Beate Ritz, Robin L. Hansen, and Irva Hertz-Picciotto, “Neurodevelopmental Disorders and Prenatal Residential Proximity to Agricultural Pesticides: The CHARGE Study,” Environmental Health Perspectives, 2014, 122:10, DOI: 10.1289/EHP.1307044.

ABSTRACT:

BACKGROUND: Gestational exposure to several common agricultural pesticides can induce developmental neurotoxicity in humans, and has been associated with developmental delay and autism.

OBJECTIVES: We evaluated whether residential proximity to agricultural pesticides during pregnancy is associated with autism spectrum disorders (ASD) or developmental delay (DD) in the Childhood Autism Risks from Genetics and Environment (CHARGE) study.

METHODS: The CHARGE study is a population-based case–control study of ASD, DD, and typical development. For 970 participants, commercial pesticide application data from the California Pesticide Use Report (1997–2008) were linked to the addresses during pregnancy. Pounds of active ingredient applied for organophophates, organochlorines, pyrethroids, and carbamates were aggregated within 1.25-km, 1.5-km, and 1.75-km buffer distances from the home. Multinomial logistic regression was used to estimate the odds ratio (OR) of exposure comparing confirmed cases of ASD (n = 486) or DD (n = 168) with typically developing referents (n = 316).

RESULTS: Approximately one-third of CHARGE study mothers lived, during pregnancy, within 1.5 km (just under 1 mile) of an agricultural pesticide application. Proximity to organophosphates at some point during gestation was associated with a 60% increased risk for ASD, higher for third-trimester exposures (OR = 2.0; 95% CI: 1.1, 3.6), and second-trimester chlorpyrifos applications (OR = 3.3; 95% CI: 1.5, 7.4). Children of mothers residing near pyrethroid insecticide applications just before conception or during third trimester were at greater risk for both ASD and DD, with ORs ranging from 1.7 to 2.3. Risk for DD was increased in those near carbamate applications, but no specific vulnerable period was identified.

CONCLUSIONS: This study of ASD strengthens the evidence linking neurodevelopmental disorders with gestational pesticide exposures, particularly organophosphates, and provides novel results of ASD and DD associations with, respectively, pyrethroids and carbamates.  FULL TEXT

Glynnis English et al., 2012

René Glynnis English, Melissa Perry, Mary M. Lee, Elaine Hoffman, Steven Delport, Mohamed Aqiel Dalvie, “Farm residence and reproductive health among boys in rural South Africa,” Environment International, 2012, 47, DOI: 10.1016/J.Envint.2012.06.006.

ABSTRACT:

Few studies have investigated reproductive health effects of contemporary agricultural pesticides in boys. To determine the association between pesticide exposure and reproductive health of boys. We conducted a cross-sectional study in rural South Africa of boys living on and off farms. The study included a questionnaire (demographics, general and reproductive health, phyto-estrogen intake, residential history, pesticide exposures, exposures during pregnancy); and a physical examination that included sexual maturity development ratings; testicular volume; height, weight, body mass index; and sex hormone concentrations. Among the 269 boys recruited into the study, 177 (65.8%) were categorized as farm (high pesticide exposures) and 98 (34.2%) as non-farm residents (lower pesticide exposures). Median ages of the two groups were 11.3 vs 12.0 years, respectively (p<0.05). After controlling for confounders that included socioeconomic status, farm boys were shorter (regression coefficient (RC)=-3.42 cm; 95% confidence interval (CI): -6.38 to -0.45 cm) and weighed less (RC=-2.26 kg; CI: -4.44 to -0.75 kg). The farm boys also had lower serum lutenizing hormone (RC=-0.28 IU/L; CI: -0.48 to -0.08 IU/L), but higher serum oestradiol (RC=8.07 pmol/L; CI: 2.34-13.81 pmol/L) and follicle stimulating hormone (RC=0.63 IU/L; CI: 0.19-1.08 U/L). Our study provides evidence that farm residence is associated with adverse growth and reproductive health of pubertal boys which may be due to environmental exposures to hormonally active contemporary agricultural pesticides.

Chevrier et al., 2011

Cecile Chevrier, Gwendolina Limon, Christine Monfort, Florence Rouget, Ronan Garlantezec, et al., “Urinary biomarkers of prenatal atrazine exposure and adverse birth outcomes in the PELAGIE birth cohort,” Environmental Health Perspectives, 2011, 119:7, DOI: 10.1289/EHP.100277.

ABSTRACT:

BACKGROUND:  Despite evidence of atrazine toxicity in developing organisms from experimental studies, few studies—and fewer epidemiologic investigations—have examined the potential effects of prenatal exposure.

OBJECTIVES: We assessed the association between adverse birth outcomes and urinary biomarkers of prenatal atrazine exposure, while taking into account exposures to other herbicides used on corn crops (simazine, alachlor, metolachlor, and acetochlor).

METHODS: This study used a case-cohort design nested in a prospective birth cohort conducted in the Brittany region of France from 2002 through 2006. We collected maternal urine samples to examine pesticide exposure biomarkers before the 19th week of gestation.

RESULTS: We found quantifiable levels of atrazine or atrazine mercapturate in urine samples from 5.5% of 579 pregnant women, and dealkylated and identified hydroxylated triazine metabolites in 20% and 40% of samples, respectively. The presence versus absence of quantifiable levels of atrazine or a specific atrazine metabolite was associated with fetal growth restriction [odds ratio (OR) = 1.5; 95% confidence interval (CI), 1.0–2.2] and small head circumference for sex and gestational age (OR = 1.7; 95% CI, 1.0–2.7). Associations with major congenital anomalies were not evident with atrazine or its specific metabolites. Head circumference was inversely associated with the presence of quantifiable urinary metolachlor.

CONCLUSIONS: This study is the first to assess associations of birth outcomes with multiple urinary biomarkers of exposure to triazine and chloroacetanilide herbicides. Evidence of associations with adverse birth outcomes raises particular concerns for countries where atrazine is still in use.  FULL TEXT

Winchester et al., 2016

Winchester P, Proctor C, Ying J, “County-level pesticide use and risk of shortened gestation and preterm birth,” Acta Paediatrica, 2016, 105:3, DOI: 10.1111/apa.13288.

ABSTRACT:

AIM: This study assesses the association between pesticide exposure in pregnancy, preterm birth (PTB) and shortened gestation.

METHODS: Pregnancy information was abstracted from the Centers for Disease Control (CDC) Non-Public Use Natality Datasets 1990-2005. Pesticide use in maternal county of residence was calculated using California Pesticide Use Reporting (PUR) data 1990-2005. Counties were ranked by pesticide use, and birth months were sorted by peak (May-June) or nonpeak (other months) pesticide use. Multivariate logistical regression models were used.

RESULTS: Counties with higher pesticide use were associated with higher PTB (low 8.59 ± 0.11%, moderate 9.25 ± 0.07%, high 10.0 ± 0.06%, p’s < 0.001) and shorter gestations (low 39.197 ± 0.014 weeks, moderate 39.126 ± 0.011 weeks, high 39.049 ± 0.011 weeks, p’s < 0.001). Peak pesticide months were associated with higher PTB (10.01 ± 0.05% vs. 9.36 ± 0.05%, p < 0.001) and shorter gestations (39.069 ± 0.007 weeks vs. 39.122 ± 0.007 weeks, p < 0.001). The pesticide effect on shortened gestation and higher PTB was found in all racial groups. Pesticide use was highest for fungicides > insecticides > fumigants > herbicides > others. Each pesticide type was found to be associated with higher PTB and shorter gestation.

CONCLUSION: PTB and shortened gestation were significantly associated with pesticide use in maternal county of residence regardless of race, gestation at birth, and in most risk categories.   FULL TEXT

Weselak et al., 2008

Weselak M, Arbuckle TE, Wigle DT, Walker MC, Krewski D, “Pre- and post-conception pesticide exposure and the risk of birth defects in an Ontario farm population.,” Reproductive Toxicology, 2008, 25:4, DOI: 10.1016/j.reprotox.2008.05.060.

ABSTRACT: The use of pesticides has enhanced the health and economies of nations around the world by improving crop production. However, pesticides may pose health risks, particularly to the fetus and young children. In a secondary analysis of the Ontario Farm Family Health Study, we explored the relationship between birth defects and parental pesticide exposure during the 3 months prior to conception and the first trimester of pregnancy. A total of 3412 pregnancies were included in the study. Logistic regression fit by maximum likelihood was used in the analysis. The results showed that pre-conception exposure to both cyanazine (odds ratio=4.99, 95% confidence interval: 1.63-15.27) and dicamba (OR=2.42, 95% CI: 1.06-5.53) were associated with increased risk of birth defects in male offspring. Nevertheless, given the self-reported nature of the exposure and outcomes in this study, the present findings should be considered primarily as hypothesis generating, requiring verification in subsequent investigations. FULL TEXT

Back To Top