skip to Main Content

Bibliography Tag: science team publication

Lanphear, 2015

Lanphear, Bruce, “The Impact of Toxins on the Developing Brain,” Annual Review of Public Health, 2015, 36:1, DOI: 10.1146/ANNUREV-PUBLHEALTH-031912-114413.

ABSTRACT:

The impact of toxins on the developing brain is usually subtle for an individual child, but the damage can be substantial at the population level. Numerous challenges must be addressed to definitively test the impact of toxins on brain development in children: We must quantify exposure using a biologic marker or pollutant; account for an ever-expanding set of potential confounders; identify critical windows of vulnerability; and repeatedly examine the association of biologic markers of toxins with intellectual abilities, behaviors, and brain function in distinct cohorts. Despite these challenges, numerous toxins have been implicated in the development of intellectual deficits and mental disorders in children. Yet, too little has been done to protect children from these ubiquitous but insidious toxins. The objective of this review is to provide an overview on the population impact of toxins on the developing brain and describe implications for public health.  FULL TEXT

Donauer et al., 2016

Donauer, Stephanie, Mekibib Altaye, Yingying Xu, Heidi Sucharew, Paul Succop, Antonia M. Calafat, Jane C. Khoury, Bruce Lanphear, Kimberly Yolton, “An Observational Study to Evaluate Associations Between Low-Level Gestational Exposure to Organophosphate Pesticides and Cognition During Early Childhood,” American Journal of Epidemiology, 2016, 184:5.

ABSTRACT:

Prenatal exposure to organophosphate pesticides, which is ubiquitous, may be detrimental to neurological development. We examined 327 mother/infant pairs in Cincinnati, Ohio, between 2003 and 2006 to determine associations between prenatal exposure to organophosphate pesticides and neurodevelopment. Twice during pregnancy urinary concentrations of 6 common dialkylphosphates, nonspecific metabolites of organophosphate pesticides, were measured. Aggregate concentrations of diethylphosphates, dimethylphosphates, and total dialkylphosphates were calculated. Bayley Scales of Infant Development, Second Edition-Mental and Psychomotor Developmental indices were administered at ages 1, 2, and 3 years, the Clinical Evaluation of Language Fundamentals-Preschool, Second Edition, at age 4, and the Wechsler Preschool and Primary Scale of Intelligence, Third Edition, at age 5. Mothers with higher urinary total dialkylphosphate concentrations reported higher levels of socioeconomic status and increased fresh fruit and vegetable intake. We found no associations between prenatal exposure to organophosphate pesticides and cognition at 1-5 years of age. In our cohort, exposure to organophosphate pesticides during pregnancy was not associated with cognition during early childhood. It is possible that a higher socioeconomic status and healthier diet may protect the fetus from potential adverse associations with gestational organophosphate pesticide exposure, or that dietary exposure to the metabolites is innocuous and not an ideal measure of exposure to the parent compound.

Laborde et al., 2015

Laborde A, Tomasina F, Bianchi F, Bruné MN, Buka I, Comba P, Corra L, Cori L, Duffert CM, Harari R, Iavarone I, McDiarmid MA, Gray KA, Sly PD, Soares A, Suk WA, Landrigan PJ, “Children’s Health in Latin America: The Influence of Environmental Exposures,” Environmental Health Perspectives,  2015 Mar; 123(3), DOI: 10.1289/EHP.1408292.

ABSTRACT:

BACKGROUND: Chronic diseases are increasing among children in Latin America.

OBJECTIVE AND METHODS: To examine environmental risk factors for chronic disease in Latin American children and to develop a strategic initiative for control of these exposures, the World Health Organization (WHO) including the Pan American Health Organization (PAHO), the Collegium Ramazzini, and Latin American scientists reviewed regional and relevant global data.

RESULTS: Industrial development and urbanization are proceeding rapidly in Latin America, and environmental pollution has become widespread. Environmental threats to children’s health include traditional hazards such as indoor air pollution and drinking-water contamination; the newer hazards of urban air pollution; toxic chemicals such as lead, asbestos, mercury, arsenic, and pesticides; hazardous and electronic waste; and climate change. The mix of traditional and modern hazards varies greatly across and within countries reflecting industrialization, urbanization, and socioeconomic forces.

CONCLUSIONS: To control environmental threats to children’s health in Latin America, WHO, including PAHO, will focus on the most highly prevalent and serious hazards—indoor and outdoor air pollution, water pollution, and toxic chemicals. Strategies for controlling these hazards include developing tracking data on regional trends in children’s environmental health (CEH), building a network of Collaborating Centres, promoting biomedical research in CEH, building regional capacity, supporting development of evidence-based prevention policies, studying the economic costs of chronic diseases in children, and developing platforms for dialogue with relevant stakeholders.  FULL TEXT

 

Benbrook, 2016c

John Peterson Myers, Michael N. Antoniou, Bruce Blumberg, Lynn Carroll, Theo Colborn, Lorne G. Everett, Michael Hansen, Philip J. Landrigan, Bruce P. Lanphear, Robin Mesnage, Laura N. Vandenberg, Frederick S. vom Saal, Wade V. Welshons and Charles M. Benbrook. “Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement,” Environmental Health, 2016, 15:19, DOI: 10.1186/s12940-016-0117-0.

ABSTRACT:

The broad-spectrum herbicide glyphosate (common trade name “Roundup”) was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds. Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization’s International Agency for Research on Cancer recently concluded that glyphosate is “probably carcinogenic to humans.” In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards. We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air, especially in agricultural regions; (3) The half-life of glyphosate in water and soil is longer than previously recognized; (4) Glyphosate and its metabolites are widely present in the global soybean supply; (5) Human exposures to GBHs are rising; (6) Glyphosate is now authoritatively classified as a probable human carcinogen; (7) Regulatory estimates of tolerable daily intakes for glyphosate in the United States and European Union are based on outdated science. We offer a series of recommendations related to the need for new investments in epidemiological studies, biomonitoring, and toxicology studies that draw on the principles of endocrinology to determine whether the effects of GBHs are due to endocrine disrupting activities. We suggest that common commercial formulations of GBHs should be prioritized for inclusion in government-led toxicology testing programs such as the U.S. National Toxicology Program, as well as for biomonitoring as conducted by the U.S. Centers for Disease Control and Prevention.  FULL TEXT

Perry et al., 2007

Perry MJ, Venners SA, Barr DB, Xu X., “Environmental pyrethroid and organophosphorus insecticide exposures and sperm concentration,” Reproductive Toxicology, 2007, 23:1, DOI: 10.1016/J.REPROTOX.2006.08.005.

ABSTRACT:

BACKGROUND: There is growing concern that poisoning and other adverse health effects are increasing because organophosphorous (OP) insecticides are now being used in combination with pyrethroid (PYR) insecticides to enhance the toxic effects of PYR insecticides on target insects, especially those that have developed PYR resistance.

OBJECTIVES: We conducted a pilot biomonitoring study to determine whether men in our reproductive cohort study were being exposed to pesticides environmentally by virtue of frequenting an agricultural setting.

METHODS: We screened 18 randomly selected urine samples collected from male participants of reproductive age for 24 parent compounds and metabolites of pesticides and examined the results in relation to sperm concentration.

RESULTS: Results showed high prevalence of exposure to OP and PYR pesticides and our preliminary analyses provided some suggestion that the higher exposure group had lower sperm concentration.

CONCLUSIONS: The potential of OP/PYR mixtures to have enhanced human toxicity needs more research attention.

Perry et al., 2006

Melissa J. Perry, Anne Marbella, Peter M. Layde, “Nonpersistent Pesticide Exposure Self-report versus Biomonitoring in Farm Pesticide Applicators,” Annals of Epidemiology, 2006, 16:9, DOI: 10.1016/J.ANNEPIDEM.2005.12.004.

ABSTRACT:

PURPOSE: Few studies using biologic markers to examine nonpersistent pesticide exposure among pesticide applicators were conducted in field settings. This study compares self-reported dermal, inhalation, and ingestion exposures with urinalysis results after one-time application of the commonly used herbicide atrazine to field crops. It was hypothesized that: i) applicator reports of exposure would be associated positively with detection of urinary atrazine metabolites, and ii) applicator reports of personal-protective-equipment (PPE) use would be associated negatively with detection of urinary atrazine metabolites.

METHODS: Wisconsin dairy farmers were randomly selected to participate in 1997 to 1998 and were instructed to collect a urine sample 8 hours after the first pesticide application of the season. Farmers then were interviewed within 1 week of their first application to report on application practices. Eighty-six urine samples were analyzed for deethylatrazine, a major atrazine metabolite.

RESULTS: Comparing urinalysis results with self-reported dermal, inhalation, and ingestion exposure showed poor agreement between self-reported exposure and urinary deethylatrazine detections (all κ < 0.40). Multivariate linear regression modeling with deethylatrazine level as the outcome showed that self-reported practices did not significantly predict atrazine metabolite levels.

CONCLUSIONS: Possible explanations for the discrepancies between urinalysis results and self-reported data include: i) inaccuracies in self-reported data and ii) substantial interpersonal variation in atrazine metabolism, resulting in major differences in body burden for similar exposures. Either explanation poses challenges for epidemiologic studies of the health effects of pesticides, which rely solely on self-reported measures of exposure. Additional evaluation of determinants of accuracy in self-assessed occupational and environmental exposures is needed.

Perry, 2008

Melissa J. Perry, “Effects of environmental and occupational pesticide exposure on human sperm: a systematic review,” Human Reproduction Update, 2008, 14:3, DOI: 10.1093/HUMUPD/DMM039.

ABSTRACT:

Relatively recent discoveries of the hormone disrupting properties of some pesticides have raised interest in how contemporary pesticide exposures, which primarily take the form of low level environmental or occupational exposures, impact spermatogenesis. The objective of the present review was to summarize results to date of studies examining pesticide effects on human sperm. Outcomes evaluated included sperm parameters, DNA damage and numerical chromosome aberrations (aneuploidy (disomy, nullisomy) or diploidy). Studies investigating sperm in men environmentally and/or occupationally exposed to any types of pesticides were included in the review. The targeted literature search over the last 15 years showed a range of pesticide classes have been investigated including pyrethroids, organophosphates, phenoxyacetic acids, carbamates, organochlorines and pesticide mixtures. None of the studies involved acute exposure events such as chemical accidents. There were 20 studies evaluating semen quality, of which 13 studies reported an association between exposure and semen quality; 6 studies evaluating DNA damage, of which 3 reported an association with exposure; and 6 studies assessing sperm aneuploidy or diploidy, of which 4 reported an association with exposure. Studies varied widely in methods, exposures and outcomes. Although suggestive for semen parameters, the epidemiologic evidence accumulated thus far remains equivocal as to the spermatotoxic and aneugenic potential of pesticides given the small number of published studies. This question warrants more investigation and suggestions for future studies are outlined.  FULL TEXT

Portier et al., 2016

Christopher J Portier, Bruce K Armstrong, Bruce C Baguley, Xaver Baur, Igor Belyaev, Robert Bellé, Fiorella Belpoggi, Annibale Biggeri, Maarten C Bosland, Paolo Bruzzi, Lygia Therese Budnik, Merete D Bugge, Kathleen Burns, Gloria M Calaf, David O Carpenter, Hillary M Carpenter, Lizbeth López-Carrillo, Richard Clapp, Pierluigi Cocco, Dario Consonni, Pietro Comba, Elena Craft, Mohamed Aqiel Dalvie, Devra Davis, Paul A Demers, Anneclaire J De Roos, Jamie DeWitt, Francesco Forastiere, Jonathan H Freedman, Lin Fritschi, Caroline Gaus, Julia M Gohlke, Marcel Goldberg, Eberhard Greiser, Johnni Hansen, Lennart Hardell, Michael Hauptmann, Wei Huang, James Huff, Margaret O James, C W Jameson, Andreas Kortenkamp, Annette Kopp-Schneider, Hans Kromhout, Marcelo L Larramendy, Philip J Landrigan, Lawrence H Lash, Dariusz Leszczynski, Charles F Lynch, Corrado Magnani, Daniele Mandrioli, Francis L Martin, Enzo Merler, Paola Michelozzi, Lucia Miligi, Anthony B Miller, Dario Mirabelli, Franklin E Mirer, Saloshni Naidoo, Melissa J Perry, Maria Grazia Petronio, Roberta Pirastu, Ralph J Portier, Kenneth S Ramos, Larry W Robertson, Theresa Rodriguez, Martin Röösli, Matt K Ross, Deodutta Roy, Ivan Rusyn, Paulo Saldiva, Jennifer Sass, Kai Savolainen, Paul T J Scheepers, Consolato Sergi, Ellen K Silbergeld, Martyn T Smith, Bernard W Stewart, Patrice Sutton, Fabio Tateo, Benedetto Terracini, Heinz W Thielmann, David B Thomas, Harri Vainio, John E Vena, Paolo Vineis, Elisabete Weiderpass, Dennis D Weisenburger, Tracey J Woodruff, Takashi Yorifuji, Il Je Yu, Paola Zambon, Hajo Zeeb,Shu-Feng Zhou, “Differences in the carcinogenic evaluation of glyphosate between the International Agency for Research on Cancer (IARC) and the European Food Safety Authority (EFSA),” Journal of Epidemiology and Community Health, 2016, 0:0, DOI: 10.1136/JECH-2015-207005.

ABSTRACT:

Not Available

FULL TEXT

 

Perry et al., 2011

Melissa J. Perry, Scott A. Venners, Xing Chen, Xue Liu, Genfu Tang, Houxun Xing, Dana Boyd Barr, Xiping Xu, “Organophosphorous pesticide exposures and sperm quality,” Reproductive Toxicology, 2011, 31:1, DOI: 10.1016/j.reprotox.2010.08.006.

ABSTRACT:

Many Americans are exposed to low levels of organophosphorous (OP) pesticides. It is unclear whether these exposures impact sperm production. We investigated whether there was an association between urinary OP insecticide metabolites and sperm concentration and motility in newly married men from a rural area of eastern People’s Republic of China. Ninety-four cases and 95 controls were included based on their median residual value of sperm concentration and motility after adjusting for relevant covariates. Their urine was analyzed for six dialkylphosphate (DAP) compounds. After adjustment for demographic and exposure variables, the odds of being a case were greater (odds ratio = 1.30, 95% confidence interval 1.02–1.65) in men with higher urinary concentrations of dimethylphosphate (DMP) compared to men with lower levels. No significant differences between cases and controls were found among the other DAP concentrations. DMP exposure and sperm concentration and motility should be explored further in environmental exposure studies.

 

Benbrook, 2016a

Charles M. Benbrook, “Trends in glyphosate herbicide use in the United States and globally,”  Environmental Sciences Europe, 2016, 28:3, DOI 10.1186/s12302-016-0070-0.

ABSTRACT:

BACKGROUND: Accurate pesticide use data are essential when studying the environmental and public health impacts of pesticide use. Since the mid-1990s, significant changes have occurred in when and how glyphosate herbicides are applied, and there has been a dramatic increase in the total volume applied.

METHODS: Data on glyphosate applications were collected from multiple sources and integrated into a dataset spanning agricultural, non-agricultural, and total glyphosate use from 1974–2014 in the United States, and from 1994–2014 globally.

RESULTS: Since 1974 in the U.S., over 1.6 billion kilograms of glyphosate active ingredient have been applied, or 19 % of estimated global use of glyphosate (8.6 billion kilograms). Globally, glyphosate use has risen almost 15-fold since so-called “Roundup Ready,” genetically engineered glyphosate-tolerant crops were introduced in 1996. Two-thirds of the total volume of glyphosate applied in the U.S. from 1974 to 2014 has been sprayed in just the last 10 years. The corresponding share globally is 72 %. In 2014, farmers sprayed enough glyphosate to apply ~1.0 kg/ha (0.8 pound/ acre) on every hectare of U.S.-cultivated cropland and nearly 0.53 kg/ha (0.47 pounds/acre) on all cropland worldwide.

CONCLUSIONS: Genetically engineered herbicide-tolerant crops now account for about 56 % of global glyphosate use. In the U.S., no pesticide has come remotely close to such intensive and widespread use. This is likely the case globally, but published global pesticide use data are sparse. Glyphosate will likely remain the most widely applied pesticide worldwide for years to come, and interest will grow in quantifying ecological and human health impacts. Accurate, accessible time-series data on glyphosate use will accelerate research progress.  FULL TEXT

Back To Top