skip to Main Content

Bibliography Tag: weed management systems

Malone and Foster, 2019

Malone, M., & Foster, E.; “A mixed-methods approach to determine how conservation management programs and techniques have affected herbicide use and distribution in the environment over time;” Science of The Total Environment, 2019, 660, 145-157; DOI: 10.1016/j.scitotenv.2018.12.266.

ABSTRACT:

No-till agriculture has the ability to reduce fuel consumption, increase soil moisture, reduce soil erosion and increase organic matter. However, it remains unclear whether it increases herbicide use overall in the long term for communities that use no-till as their primary source of conservation agriculture. The preponderance of literature suggests that no-till has increased herbicide use, but it is difficult to quantify how much herbicide has increased in a given location and to directly correlate changes in herbicide use to changes in soil and water quality. This paper provides several methods to determine how herbicide use has changed over time in an agricultural community in Oregon that switched over to no-till in the late 1990s and early 2000s. These methods include: spatial analysis of remote sensing satellite imagery of vegetation health along streams; use of a drone fitted with an agricultural camera to detect vegetation health; and soil, sediment, and water sampling for the most commonly used herbicides in the study area. By using these methods, this study shows where stream vegetation health continues to be an issue in the agricultural community, and where concentrations of a commonly used herbicide in the community may be impacting human and ecological health. This study has important implications for impacts to soil and water quality over time in agricultural communities, as many researchers have noted the need to determine the long term effects of conversion to no-till and other forms of conservation agriculture. By providing these methods, communities heavily engaged in multiple forms of conservation agriculture may be able to track herbicide use changes in real time and on shorter decadal time spans in places where conservation agriculture is practiced. FULL TEXT

Beckie, 2017

Beckie, Hugh J.; “Herbicide-Resistant Weeds: Management Tactics and Practices;” Weed Technology, 2017, 20(3), 793-814; DOI: 10.1614/wt-05-084r1.1.

ABSTRACT:

In input-intensive cropping systems around the world, farmers rarely proactively manage weeds to prevent or delay the selection for herbicide resistance. Farmers usually increase the adoption of integrated weed management practices only after herbicide resistance has evolved, although herbicides continue to be the dominant method of weed control. Intergroup herbicide resistance in various weed species has been the main impetus for changes in management practices and adoption of cropping systems that reduce selection for resistance. The effectiveness and adoption of herbicide and nonherbicide tactics and practices for the proactive and reactive management of herbicide-resistant (HR) weeds are reviewed. Herbicide tactics include sequences and rotations, mixtures, application rates, site-specific application, and use of HR crops. Nonherbicide weed-management practices or nonselective herbicides applied preplant or in crop, integrated with less-frequent selective herbicide use in diversified cropping systems, have mitigated the evolution, spread, and economic impact of HR weeds. FULL TEXT

Alberto et al., 2016

Alberto, D., Serra, A. A., Sulmon, C., Gouesbet, G., & Couee, I.; “Herbicide-related signaling in plants reveals novel insights for herbicide use strategies, environmental risk assessment and global change assessment challenges;” Science of The Total Environment, 2016, 569-570, 1618-1628; DOI: 10.1016/j.scitotenv.2016.06.064.

ABSTRACT:

Herbicide impact is usually assessed as the result of a unilinear mode of action on a specific biochemical target with a typical dose-response dynamics. Recent developments in plant molecular signaling and crosstalk between nutritional, hormonal and environmental stress cues are however revealing a more complex picture of inclusive toxicity. Herbicides induce large-scale metabolic and gene-expression effects that go far beyond the expected consequences of unilinear herbicide-target-damage mechanisms. Moreover, groundbreaking studies have revealed that herbicide action and responses strongly interact with hormone signaling pathways, with numerous regulatory protein-kinases and -phosphatases, with metabolic and circadian clock regulators and with oxidative stress signaling pathways. These interactions are likely to result in mechanisms of adjustment that can determine the level of sensitivity or tolerance to a given herbicide or to a mixture of herbicides depending on the environmental and developmental status of the plant. Such regulations can be described as rheostatic and their importance is discussed in relation with herbicide use strategies, environmental risk assessment and global change assessment challenges. FULL TEXT

Gage et al., 2019

Gage, Karla L., Krausz, Ronald F., & Walters, S. Alan; “Emerging Challenges for Weed Management in Herbicide-Resistant Crops;” Agriculture, 2019, 9(8); DOI: 10.3390/agriculture9080180.

ABSTRACT:

Since weed management is such a critical component of agronomic crop production systems, herbicides are widely used to provide weed control to ensure that yields are maximized. In the last few years, herbicide-resistant (HR) crops, particularly those that are glyphosate-resistant, and more recently, those with dicamba (3,6-dichloro-2-methoxybenzoic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) resistance are changing the way many growers manage weeds. However, past reliance on glyphosate and mistakes made in stewardship of the glyphosate-resistant cropping systemhave directly led to the current weed resistance problems that now occur in many agronomic cropping systems, and new technologies must be well-stewarded. New herbicide-resistant trait technologies in soybean, such as dicamba-, 2,4-D-, and isoxaflutole- ((5-cyclopropyl-4-isoxazolyl)[2-(methylsulfonyl)-4-(trifluoromethyl)phenyl]methanone) resistance, are being combined with glyphosate- and glufosinate-resistance traits to manage herbicide-resistant weed populations. In cropping systems with glyphosate-resistant weed species, these new trait options may provide effective weed management tools, although there may be increased risk of off-target movement and susceptible plant damage with the use of some of these technologies. The use of diverse weed management practices to reduce the selection pressure for herbicide-resistant weed evolution is essential to preserve the utility of new traits. The use of herbicides with differing sites of action (SOAs), ideally in combination as mixtures, but also in rotation as part of a weed management program may slow the evolution of resistance in some cases. Increased selection pressure from the effects of some herbicide mixtures may lead to more cases of metabolic herbicide resistance. The most effective long-term approach for weed resistance management is the use of Integrated Weed Management (IWM) which may build the ecological complexity of the cropping system. Given the challenges in management of herbicide-resistant weeds, IWM will likely play a critical role in enhancing future food security for a growing global population. FULL TEXT

Kniss, 2016

Kniss, A. R., “Long-term trends in the intensity and relative toxicity of herbicide use,” Nature Communications, 2017, 8, 14865. DOI: 10.1038/ncomms14865.

ABSTRACT:

Herbicide use is among the most criticized aspects of modern farming, especially as it relates to genetically engineered (GE) crops. Many previous analyses have used flawed metrics to evaluate herbicide intensity and toxicity trends. Here, I show that herbicide use intensity increased over the last 25 years in maize, cotton, rice and wheat. Although GE crops have been previously implicated in increasing herbicide use, herbicide increases were more rapid in non-GE crops. Even as herbicide use increased, chronic toxicity associated with herbicide use decreased in two out of six crops, while acute toxicity decreased in four out of six crops. In the final year for which data were available (2014 or 2015), glyphosate accounted for 26% of maize, 43% of soybean and 45% of cotton herbicide applications. However, due to relatively low chronic toxicity, glyphosate contributed only 0.1, 0.3 and 3.5% of the chronic toxicity hazard in those crops, respectively. FULL TEXT

Koo et al., 2018

Koo, Dal-Hoe, Molin, William T, Saski, Christopher A, Jiang, Jiming, Putta, Karthik, Jugulam, Mithila, Friebe, Bernd, & Gill, Bikram S, “Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri,” Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(13), 3332-3337. DOI: 10.1073/pnas.1719354115.

ABSTRACT:

Gene amplification has been observed in many bacteria and eukaryotes as a response to various selective pressures, such as antibiotics, cytotoxic drugs, pesticides, herbicides, and other stressful environmental conditions. An increase in gene copy number is often found as extrachromosomal elements that usually contain autonomously replicating extrachromosomal circular DNA molecules (eccDNAs). Amaranthus palmeri, a crop weed, can develop herbicide resistance to glyphosate [N-(phosphonomethyl) glycine] by amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, the molecular target of glyphosate. However, biological questions regarding the source of the amplified EPSPS, the nature of the amplified DNA structures, and mechanisms responsible for maintaining this gene amplification in cells and their inheritance remain unknown. Here, we report that amplified EPSPS copies in glyphosate-resistant (GR) A. palmeri are present in the form of eccDNAs with various conformations. The eccDNAs are transmitted during cell division in mitosis and meiosis to the soma and germ cells and the progeny by an as yet unknown mechanism of tethering to mitotic and meiotic chromosomes. We propose that eccDNAs are one of the components of McClintock’s postulated innate systems [McClintock B (1978) Stadler Genetics Symposium] that can rapidly produce soma variation, amplify EPSPS genes in the sporophyte that are transmitted to germ cells, and modulate rapid glyphosate resistance through genome plasticity and adaptive evolution. FULL TEXT

Hicks et al., 2018

Hicks, Helen L., Comont, David, Coutts, Shaun R., Crook, Laura, Hull, Richard, Norris, Ken, Neve, Paul, Childs, Dylan Z., & Freckleton, Robert P., “The factors driving evolved herbicide resistance at a national scale,” Nature Ecology & Evolution, 2018, 2(3), 529-536. DOI: 10.1038/s41559-018-0470-1.

ABSTRACT:

Repeated use of xenobiotic chemicals has selected for the rapid evolution of resistance, threatening health and food security at a global scale. Strategies for preventing the evolution of resistance include cycling and mixtures of chemicals and diversification of management. We currently lack large-scale studies that evaluate the efficacy of these different strategies for minimizing the evolution of resistance. Here we use a national-scale data set of occurrence of the weed Alopecurus myosuroides (black-grass) in the United Kingdom to address this. Weed densities are correlated with assays of evolved resistance, supporting the hypothesis that resistance is driving weed abundance at a national scale. Resistance was correlated with the frequency of historical herbicide applications, suggesting that evolution of resistance is primarily driven by intensity of exposure to herbicides, but was unrelated directly to other cultural techniques. We find that populations resistant to one herbicide are likely to show resistance to multiple herbicide classes. Finally, we show that the economic costs of evolved resistance are considerable: loss of control through resistance can double the economic costs of weeds. This research highlights the importance of managing threats to food production and healthcare systems using an evolutionarily informed approach in a proactive not reactive manner.

Harre et al., 2017

Harre, Nick T., Nie, Haozhen, Robertson, Renae R., Johnson, William G., Weller, Stephen C., & Young, Bryan G., “Distribution of Herbicide-Resistant Giant Ragweed (Ambrosia trifida) in Indiana and Characterization of Distinct Glyphosate-Resistant Biotypes,” Weed Science, 2017, 65(06), 699-709. DOI: 10.1017/wsc.2017.56.

ABSTRACT:

Giant ragweed is a highly competitive weed that continually threatens crop production systems due to evolved resistance to acetolactate synthase–inhibiting herbicides (ALS-R) and glyphosate (GR). Two biotypes of GR giant ragweed exist and are differentiated by their response to glyphosate, termed here as rapid response (RR) and non–rapid response (NRR). A comparison of data from surveys of Indiana crop fields done in 2006 and 2014 showed that GR giant ragweed has spread from 15% to 39% of Indiana counties and the NRR biotype is the most prevalent. A TaqMan ® single-nucleotide polymorphism genotyping assay was developed to identify ALS-R populations and revealed 47% of GR populations to be ALS-R as well. The magnitude of glyphosate resistance for NRR populations was 4.6 and 5.9 based on GR 50 and LD 50 estimates, respectively. For RR populations, these values were 7.8 to 9.2 for GR 50 estimates and 19.3 to 22.3 for LD 50 estimates. A novel use of the Imaging-PAM fluorometer was developed to discriminate RR plants by assessing photosystem II quantum yield across the entire leaf surface. H 2 O 2 generation in leaves of glyphosate-treated plants was also measured by 3,3′-diaminobenzidine staining and quantified using imagery analysis software. Results show photo-oxidative stress of mature leaves is far greater and occurs more rapidly following glyphosate treatment in RR plants compared with NRR and glyphosate-susceptible plants and is positively associated with glyphosate dose. These results suggest that under continued glyphosate selection pressure, the RR biotype may surpass the NRR biotype as the predominant form of GR giant ragweed in Indiana due to a higher level of glyphosate resistance. Moreover, the differential photo-oxidative stress patterns in response to glyphosate provide evidence of different mechanisms of resistance present in RR and NRR biotypes.

Green, 2018

Green, J. M., “The rise and future of glyphosate and glyphosate-resistant crops,” Pest Management Science, 2018, 74(5), 1035-1039. DOI: 10.1002/ps.4462.

ABSTRACT:

Glyphosate and glyphosate-resistant crops had a revolutionary impact on weed management practices, but the epidemic of glyphosate-resistant (GR) weeds is rapidly decreasing the value of these technologies. In areas that fully adopted glyphosate and GR crops, GR weeds evolved and glyphosate and glyphosate traits now must be combined with other technologies. The chemical company solution is to combine glyphosate with other chemicals, and the seed company solution is to combine glyphosate resistance with other traits. Unfortunately, companies have not discovered a new commercial herbicide mode-of-action for over 30 years and have already developed or are developing traits for all existing herbicide types with high utility. Glyphosate mixtures and glyphosate trait combinations will be the mainstays of weed management for many growers, but are not going to be enough to keep up with the capacity of weeds to evolve resistance. Glufosinate, auxin, HPPD-inhibiting and other herbicide traits, even when combined with glyphosate resistance, are incremental and temporary solutions. Herbicide and seed businesses are not going to be able to support what critics call the chemical and transgenic treadmills for much longer. The long time without the discovery of a new herbicide mode-of-action and the epidemic of resistant weeds is forcing many growers to spend much more to manage weeds and creating a worst of times, best of times predicament for the crop protection and seed industry. (c) 2016 Society of Chemical Industry.  FULL TEXT

EPA, 2018

Environmental Protection Agency, “Occupational Pesticide Handler Unit Exposure Surrogate Reference Table,” Office of Pesticide Programs, 2018, Available at: https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/exposure-surrogate-reference-table-pesticide-risk.

SUMMARY:

The Exposure Surrogate Reference Table provides pesticide exposure information for risk assessment based on exposure scenarios, exposure routes and applicable personal protective equipment. FULL TEXT

Back To Top