skip to Main Content

Bibliography Tag: biomonitoring

Glynnis English et al., 2012

René Glynnis English, Melissa Perry, Mary M. Lee, Elaine Hoffman, Steven Delport, Mohamed Aqiel Dalvie, “Farm residence and reproductive health among boys in rural South Africa,” Environment International, 2012, 47, DOI: 10.1016/J.Envint.2012.06.006.

ABSTRACT:

Few studies have investigated reproductive health effects of contemporary agricultural pesticides in boys. To determine the association between pesticide exposure and reproductive health of boys. We conducted a cross-sectional study in rural South Africa of boys living on and off farms. The study included a questionnaire (demographics, general and reproductive health, phyto-estrogen intake, residential history, pesticide exposures, exposures during pregnancy); and a physical examination that included sexual maturity development ratings; testicular volume; height, weight, body mass index; and sex hormone concentrations. Among the 269 boys recruited into the study, 177 (65.8%) were categorized as farm (high pesticide exposures) and 98 (34.2%) as non-farm residents (lower pesticide exposures). Median ages of the two groups were 11.3 vs 12.0 years, respectively (p<0.05). After controlling for confounders that included socioeconomic status, farm boys were shorter (regression coefficient (RC)=-3.42 cm; 95% confidence interval (CI): -6.38 to -0.45 cm) and weighed less (RC=-2.26 kg; CI: -4.44 to -0.75 kg). The farm boys also had lower serum lutenizing hormone (RC=-0.28 IU/L; CI: -0.48 to -0.08 IU/L), but higher serum oestradiol (RC=8.07 pmol/L; CI: 2.34-13.81 pmol/L) and follicle stimulating hormone (RC=0.63 IU/L; CI: 0.19-1.08 U/L). Our study provides evidence that farm residence is associated with adverse growth and reproductive health of pubertal boys which may be due to environmental exposures to hormonally active contemporary agricultural pesticides.

Young et al., 2013

Heather A Young, John D Meeker, Sheena E Martenies, Zaida I Figueroa, Dana Boyd Barr and Melissa J Perry, “Environmental exposure to pyrethroids and sperm sex chromosome disomy: a cross-sectional study,” Environmental  Health, 2013, 12:111, DOI: 10.1186/1476-069X-12-111.

ABSTRACT:

BACKGROUND: The role of environmental pesticide exposures, such as pyrethroids, and their relationship to sperm abnormalities are not well understood. This study investigated whether environmental exposure to pyrethroids was associated with altered frequency of sperm sex chromosome disomy in adult men.

METHODS: A sample of 75 subjects recruited through a Massachusetts infertility clinic provided urine and semen samples. Individual exposures were measured as urinary concentrations of three pyrethroid metabolites ((3-phenoxybenzoic acid (3PBA), cis- and trans- 3-(2,2-Dichlorovinyl)-1-methylcyclopropane-1,2-dicarboxylic acid (CDCCA and TDCCA)). Multiprobe fluorescence in situ hybridization for chromosomes X, Y, and 18 was used to determine XX, YY, XY, 1818, and total sex chromosome disomy in sperm nuclei. Poisson regression analysis was used to examine the association between aneuploidy rates and pyrethroid metabolites while adjusting for covariates.

RESULTS: Between 25-56% of the sample were above the limit of detection (LOD) for the pyrethroid metabolites. All sex chromosome disomies were increased by 7-30% when comparing men with CDCCA and TDCCA levels above the LOD to those below the LOD. For 3PBA, compared to those below the LOD, those above the LOD had YY18 disomy rates 1.28 times higher (95% CI: 1.15, 1.42) whereas a reduced rate was seen for XY18 and total disomy (IRR = 0.82; 95% CI: 0.77, 0.87; IRR = 0.93; 95% CI: 0.87-0.97), and no association was seen for XX18 and 1818.

CONCLUSIONS: Our findings suggest that urinary concentrations of CDCCA and TDCCA above the LOD were associated with increased rates of aneuploidy. However the findings for 3BPA were not consistent. This is the first study to examine these relationships, and replication of our findings is needed before the association between pyrethroid metabolites and aneuploidy can be fully defined.  FULL TEXT

Canadian Food Inspection Agency, 2017

Canadian Food Inspection Agency, “Safeguarding with Science: Glyphosate Testing in 2015-2016,” 2017, CFIA Science Branch Survey Report.

ABSTRACT:

In 2015-2016, the CFIA tested a total of 3,188 food samples for glyphosate. Glyphosate was found in 29.7% of samples. Glyphosate residues above MRLs were found in only 1.3% of samples. This data was evaluated by Health Canada and no human health concerns were identified.  FULL TEXT

Vandenberg et al., 2017

Laura N Vandenberg, Bruce Blumberg, Michael N Antoniou, Charles M Benbrook, Lynn Carroll, Theo Colborn, Lorne G Everett, Michael Hansen, Philip J Landrigan, Bruce P Lanphear, Robin Mesnage, Frederick S vom Saal, Wade V Welshons, John Peterson Myers, “Is it time to reassess current safety standards for glyphosate-based herbicides?”,  Journal of Epidemiology and Community Health, 2017, 0, DOI: 10.113/jech-2016-208463.

ABSTRACT:

Use of glyphosate-based herbicides (GBHs) increased ∼100-fold from 1974 to 2014. Additional increases are expected due to widespread emergence of glyphosate-resistant weeds, increased application of GBHs, and preharvest uses of GBHs as desiccants. Current safety assessments rely heavily on studies conducted over 30 years ago. We have considered information on GBH use, exposures, mechanisms of action, toxicity and epidemiology. Human exposures to glyphosate are rising, and a number of in vitro and in vivo studies challenge the basis for the current safety assessment of glyphosate and GBHs. We conclude that current safety standards for GBHs are outdated and may fail to protect public health or the environment. To improve safety standards, the following are urgently needed: (1) human biomonitoring for glyphosate and its metabolites; (2) prioritisation of glyphosate and GBHs for hazard assessments, including toxicological studies that use state-of-the-art approaches; (3) epidemiological studies, especially of occupationally exposed agricultural workers, pregnant women and their children and (4) evaluations of GBHs in commercially used formulations, recognising that herbicide mixtures likely have effects that are not predicted by studying glyphosate alone.  FULL TEXT

Chevrier et al., 2011

Cecile Chevrier, Gwendolina Limon, Christine Monfort, Florence Rouget, Ronan Garlantezec, et al., “Urinary biomarkers of prenatal atrazine exposure and adverse birth outcomes in the PELAGIE birth cohort,” Environmental Health Perspectives, 2011, 119:7, DOI: 10.1289/EHP.100277.

ABSTRACT:

BACKGROUND:  Despite evidence of atrazine toxicity in developing organisms from experimental studies, few studies—and fewer epidemiologic investigations—have examined the potential effects of prenatal exposure.

OBJECTIVES: We assessed the association between adverse birth outcomes and urinary biomarkers of prenatal atrazine exposure, while taking into account exposures to other herbicides used on corn crops (simazine, alachlor, metolachlor, and acetochlor).

METHODS: This study used a case-cohort design nested in a prospective birth cohort conducted in the Brittany region of France from 2002 through 2006. We collected maternal urine samples to examine pesticide exposure biomarkers before the 19th week of gestation.

RESULTS: We found quantifiable levels of atrazine or atrazine mercapturate in urine samples from 5.5% of 579 pregnant women, and dealkylated and identified hydroxylated triazine metabolites in 20% and 40% of samples, respectively. The presence versus absence of quantifiable levels of atrazine or a specific atrazine metabolite was associated with fetal growth restriction [odds ratio (OR) = 1.5; 95% confidence interval (CI), 1.0–2.2] and small head circumference for sex and gestational age (OR = 1.7; 95% CI, 1.0–2.7). Associations with major congenital anomalies were not evident with atrazine or its specific metabolites. Head circumference was inversely associated with the presence of quantifiable urinary metolachlor.

CONCLUSIONS: This study is the first to assess associations of birth outcomes with multiple urinary biomarkers of exposure to triazine and chloroacetanilide herbicides. Evidence of associations with adverse birth outcomes raises particular concerns for countries where atrazine is still in use.  FULL TEXT

Cocker et al., 2011

J. Cocker, H. J. Mason, N. D. Warren and R. J. Cotton, “Creatinine adjustment of biological monitoring results,” Occupational Medicine, 2011, 61, DOI: 10.1093/occmed/kqr084.

ABSTRACT:

BACKGROUND: Biological monitoring (BM) aids exposure assessment but where this is based on incomplete collections of single urine voiding measurement of creatinine is often used to adjust analyte concentrations for the effects of fluid balance.

AIMS: To provide reference data on creatinine concentrations in urine samples from a population of UK workers.

METHODS: Urine samples sent to the Health and Safety Laboratory were analysed for creatinine by an automated kinetic Jaffe technique using alkaline picric acid and the results stored in a database. Statistical analysis of the data used linear mixed effects models on the natural log-transformed data.

RESULTS:  Between 1996 and 2007, the laboratory analysed 49 506 urine samples from 20 433 UK adult workers. In the 42 817 samples where gender was known, 93% were from men and 7% were from women. The overall mean and median creatinine concentrations were both 12 mmol/l corresponding to 1.36 g/l. The mean (13 mmol/l) and median (12 mmol/l) creatinine concentrations for men were higher than those (9 and 10 mmol/l, respectively) for women.

CONCLUSIONS: Gender differences in creatinine concentrations and the range of 0.3–3.0 g/l (2.653 and 26.53 mmol/l)  traditionally used for confirming acceptability of urine samples mean that 2.5% of samples from male and 9% from female workers were flagged as ‘low creatinine’ and required a repeat sample. In addition, care should be taken interpreting any apparent gender differences in BM results to ensure that they are due to exposure and not an artefact of creatinine adjustment.  FULL TEXT

Swan et al., 2003

Swan SH, Kruse RL, Liu F, Barr DB, Drobnis EZ, Redmon JB, Wang C, Brazil C, Overstreet JW, “Semen quality in relation to biomarkers of pesticide exposure,” Environmental Health Perspectives, 2003, 111:12.

ABSTRACT: We previously reported reduced sperm concentration and motility in fertile men in a U.S. agrarian area (Columbia, MO) relative to men from U.S. urban centers (Minneapolis, MN; Los Angeles, CA; New York, NY). In the present study we address the hypothesis that pesticides currently used in agriculture in the Midwest contributed to these differences in semen quality. We selected men in whom all semen parameters (concentration, percentage sperm with normal morphology, and percentage motile sperm) were low (cases) and men in whom all semen parameters were within normal limits (controls) within Missouri and Minnesota (sample sizes of 50 and 36, respectively) and measured metabolites of eight current-use pesticides in urine samples provided at the time of semen collection. All pesticide analyses were conducted blind with respect to center and case-control status. Pesticide metabolite levels were elevated in Missouri cases, compared with controls, for the herbicides alachlor and atrazine and for the insecticide diazinon [2-isopropoxy-4-methyl-pyrimidinol (IMPY)]; for Wilcoxon rank test, p = 0.0007, 0.012, and 0.0004 for alachlor, atrazine, and IMPY, respectively. Men from Missouri with high levels of alachlor or IMPY were significantly more likely to be cases than were men with low levels [odds ratios (ORs) = 30.0 and 16.7 for alachlor and IMPY, respectively], as were men with atrazine levels higher than the limit of detection (OR = 11.3). The herbicides 2,4-D (2,4-dichlorophenoxyacetic acid) and metolachlor were also associated with poor semen quality in some analyses, whereas acetochlor levels were lower in cases than in controls (p = 0.04). No significant associations were seen for any pesticides within Minnesota, where levels of agricultural pesticides were low, or for the insect repellent DEET (N,N-diethyl-m-toluamide) or the malathion metabolite malathion dicarboxylic acid. These associations between current-use pesticides and reduced semen quality suggest that agricultural chemicals may have contributed to the reduction in semen quality in fertile men from mid-Missouri we reported previously.  FULL TEXT

Swan, 2006

Swan SH, “Semen quality in fertile US men in relation to geographical area and pesticide exposure,” International Journal of Andrology, 2006, 29:1.

ABSTRACT: We conducted the first US study to compare semen quality among study centres using standardized methods and strict quality control. We present data on semen quality in partners of 493 pregnant women recruited through prenatal clinics in four US cities during 1999-2001. Sperm concentration, semen volume and motility were determined at the centres and morphology was assessed at a central laboratory. While between-centre differences in sperm morphology and sample volume were small, sperm concentration and motility were significantly reduced in Columbia, MO (MO) relative to men in New York, NY, Minneapolis, MN and Los Angeles, CA; total number of motile sperm was 113 x 10(6) in MO and 162, 201 and 196 x 10(6) in CA, MN and NY respectively. Differences among centres remained significant in multivariate models that controlled for abstinence time, semen analysis time, age, race, smoking, history of sexually transmitted disease and recent fever (all p-values <0.01). We hypothesized that poorer sperm concentration and motility in MO men relative to other centres might be related to agricultural pesticides that are commonly used in the mid-west. We investigated this hypothesis by conducting a nested case-control study within the MO cohort. We selected 25 men in this cohort for whom all semen parameters (concentration, % normal morphology and % motile) were low as cases and an equal number of men for whom all semen parameters were within normal limits as controls. We measured metabolites of eight non-persistent, current-use pesticides in urine samples the men had provided at the time of semen collection. Pesticide metabolite levels were elevated in cases compared with controls for the herbicides alachlor and atrazine, and for the insecticide diazinon (2-isopropoxy-4-methyl-pyrimidinol) (p-values for Wilcoxon rank test = 0.0007, 0.012, and 0.0004 for alachlor, atrazine and diazinon respectively). Men with higher levels of alachlor or diazinon were significantly more likely to be cases than men with low levels [odds ratios (OR) = 30.0, 16.7 for alachlor and diazinon respectively], as were men with atrazine over the limit of detection (OR = 11.3). These associations between current-use pesticides and reduced semen quality suggest that agricultural chemicals may have contributed to the reduced semen quality seen in fertile men from mid-Missouri.

Schreinemachers, 2010

Schreinemachers DM, “Perturbation of lipids and glucose metabolism associated with previous 2,4-D exposure: a cross-sectional study of NHANES III data, 1988-1994,” Environmental Health, 2010, 9:11, DOI: 10.1186/1476-069X-9-11.

ABSTRACT:

BACKGROUND:
Results from previous population studies showed that mortality rates from acute myocardial infarction and type-2 diabetes during the 1980s and 1990s in rural, agricultural counties of Minnesota, Montana, North and South Dakota, were higher in counties with a higher level of spring wheat farming than in counties with lower levels of this crop. Spring wheat, one of the major field crops in these four states, was treated for 85% or more of its acreage with chlorophenoxy herbicides. In the current study NHANES III data were reviewed for associations of 2,4-dichlorophenoxy acetic acid (2,4-D) exposure, one of the most frequently used chlorophenoxy herbicides, with risk factors that are linked to the pathogenesis of acute myocardial infarction and type-2 diabetes, such as dyslipidemia and impaired glucose metabolism.

METHODS:
To investigate the toxicity pattern of chlorophenoxy herbicides, effects of a previous 2,4-D exposure were assessed by comparing levels of lipids, glucose metabolism, and thyroid stimulating hormone in healthy adult NHANES III subjects with urinary 2,4-D above and below the level of detection, using linear regression analysis. The analyses were conducted for all available subjects and for two susceptible subpopulations characterized by high glycosylated hemoglobin (upper 50th percentile) and low thyroxine (lower 50th percentile).

RESULTS:
Presence of urinary 2,4-D was associated with a decrease of HDL levels: 8.6% in the unadjusted data (p-value = 0.006), 4.8% in the adjusted data (p-value = 0.08), and 9% in the adjusted data for the susceptible subpopulation with low thyroxine (p-value = 0.02). An effect modification of the inverse triglycerides-HDL relation was observed in association with 2,4-D. Among subjects with low HDL, urinary 2,4-D was associated with increased levels of triglycerides, insulin, C-peptide, and thyroid stimulating hormone, especially in the susceptible subpopulations. In contrast, subjects with high HDL did not experience adverse 2,4-D associated effects.

CONCLUSIONS:
The results indicate that exposure to 2,4-D was associated with changes in biomarkers that, based on the published literature, have been linked to risk factors for acute myocardial infarction and type-2 diabetes.  FULL TEXT

Rusiecki et al., 2017

Rusiecki JA, Beane Freeman LE, Bonner MR, Alexander M, Chen L, Andreotti G, Barry KH, Moore LE, Byun HM, Kamel F, Alavanja M, Hoppin JA, Baccarelli A,”High pesticide exposure events and DNA methylation among pesticide applicators in the agricultural health study,” Environmental and Molecular Mutagenesis, 2017, 58:1, DOI: 10.1002/em.22067.

ABSTRACT: Pesticide exposure has been associated with acute and chronic adverse health effects. DNA methylation (DNAm) may mediate these effects. We evaluated the association between experiencing unusually high pesticide exposure events (HPEEs) and DNAm among pesticide applicators in the Agricultural Health Study (AHS), a prospective study of applicators from Iowa and North Carolina. DNA was extracted from whole blood from male AHS pesticide applicators (n = 695). Questionnaire data were used to ascertain the occurrence of HPEEs over the participant’s lifetime. Pyrosequencing was used to quantify DNAm in CDH1, GSTp1, and MGMT promoters, and in the repetitive element, LINE-1. Linear and robust regression analyses evaluated adjusted associations between HPEE and DNAm. Ever having an HPEE (n = 142; 24%) was associated with elevated DNAm in the GSTp1 promoter at CpG7 (chr11:67,351,134; P < 0.01) and for the mean across the CpGs measured in the GSTp1 promoter (P < 0.01). In stratified analyses, elevated GSTP1 promoter DNAm associated with HPEE was more pronounced among applicators >59 years and those with plasma folate levels ≤16.56 ng/mL (p-interaction <0.01); HPEE was associated with reduced MGMT promoter DNAm at CpG2 (chr10:131,265,803; P = 0.03), CpG3 (chr10:131,265,810; P = 0.05), and the mean across CpGs measured in the MGMT promoter (P = 0.03) among applicators >59 years and reduced LINE-1 DNAm (P = 0.05) among applicators with ≤16.56 ng/mL plasma folate. Non-specific HPEEs may contribute to increased DNAm in GSTp1, and in some groups, reduced DNAm in MGMT and LINE-1. The impacts of these alterations on disease development are unclear, but elevated GSTp1 promoter DNAm and subsequent gene inactivation has been consistently associated with prostate cancer.

Back To Top