skip to Main Content

Bibliography Tag: biomonitoring

Omoike et al., 2015

Omoike OE, Lewis RC, Meeker JD, “Association between urinary biomarkers of exposure to organophosphate insecticides and serum reproductive hormones in men from NHANES 1999-2002,” Reproductive Toxicology, 2015, 53, DOI: 10.1016/j.reprotox.2015.04.005.

ABSTRACT: Exposure to organophosphate (OP) insecticides may alter reproductive hormone levels in men and increase the risk for poor reductive health and other adverse health outcomes. However, relevant epidemiology studies in men are limited. We evaluated urinary concentrations of OP metabolites (3,5,6-trichloro-2-pyridinol and six dialkyl phosphates) in relation to serum concentrations of testosterone (T) and estradiol among 356 men aged 20-55 years old from the U.S. National Health and Nutrition Examination Survey. Biomarkers were detected in greater than 50% of the samples, except for diethyldithiophosphate, dimethylphosphate, and dimethyldithiophosphate. In adjusted regression models, we observed a statistically significant inverse relationship between diethyl phosphate (DEP) and T when DEP was modeled as either a continuous or categorical variable. These findings add to the limited evidence that exposure to certain OP insecticides is linked to altered T in men, which may have important implications for male health.  FULL TEXT

Winchester et al., 2017

Winchester PD, Parvez S, Proctor C, Ying J, Gerona RR, “Fetal Exposure to Glyphosate,” Presentation, Pediatric Academic Societies, May 6-7, 2017, San Francisco, California.

SUMMARY:

Measured glyphosate in pregnant women to estimate fetal exposure and monitor potential adverse effects on pregnancy outcomes. Glyphosate was present in 91% of the urine samples and higher glyphosate levels were correlated with shorter pregnancies and lower birth weights.  FULL TEXT

Niemann et al., 2015

Niemann L, Sieke C, Pfeil R, Solecki R., “A critical review of glyphosate findings in human urine samples and comparison with the exposure of operators and consumers,” 2015,   Journal of Consumer Protection and Food Safety, 10: 3-12,  DOI: 10.1007/s00003-014-0927-3.

ABSTRACT: For active substances in plant protection products (PPP) with well defined urinary elimination, no potential for accumulation and virtually no metabolism, measuring of urine levels could be a powerful tool for human biomonitoring. Such data may provide reliable estimates of actual internal human exposure that can be compared to appropriate reference values, such as the ‘acceptable daily intake (ADI)’ or the ‘acceptable operator exposure level (AOEL)’. Traces of the active compound glyphosate were found in human urine samples, probably resulting either from occupational use for plant protection purposes or from dietary intake of residues. A critical review and comparison of data obtained in a total of seven studies from Europe and the US was performed. The conclusion can be drawn that no health concern was revealed because the resulting exposure estimates were by magnitudes lower than the ADI or the AOEL. The expected internal exposure was clearly below the worst-case predictions made in the evaluation of glyphosate as performed for the renewal of its approval within the European Union. However, differences in the extent of exposure with regard to the predominant occupational and dietary exposure routes and between Europe and North America became apparent.  FULL TEXT

Myers et al., 2016

Myers JP, Antoniou MN, Blumberg B, Carroll L, Colborn T, Everett LG, Michael Hansen, Landrigan PJ, Lanphear BP, Mesnage R, Vandenberg LN, Vom Saal FS, Welshons WV, Benbrook CM, “Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement,” Environmental Health, 2016, 15:19, DOI: 10.1186/s12940-016-0117-0.

ABSTRACT:  The broad-spectrum herbicide glyphosate (common trade name “Roundup”) was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds. Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization’s International Agency for Research on Cancer recently concluded that glyphosate is “probably carcinogenic to humans.” In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards. We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air, especially in agricultural regions; (3) The half-life of glyphosate in water and soil is longer than previously recognized; (4) Glyphosate and its metabolites are widely present in the global soybean supply; (5) Human exposures to GBHs are rising; (6) Glyphosate is now authoritatively classified as a probable human carcinogen; (7) Regulatory estimates of tolerable daily intakes for glyphosate in the United States and European Union are based on outdated science. We offer a series of recommendations related to the need for new investments in epidemiological studies, biomonitoring, and toxicology studies that draw on the principles of endocrinology to determine whether the effects of GBHs are due to endocrine disrupting activities. We suggest that common commercial formulations of GBHs should be prioritized for inclusion in government-led toxicology testing programs such as the U.S. National Toxicology Program, as well as for biomonitoring as conducted by the U.S. Centers for Disease Control and Prevention.  FULL TEXT

Mesnage et al., 2012b

Mesnage R, Moesch C, Le Grand R, Lauthier G, de Vendomois JS, Gress S, Seralini GR, “Glyphosate exposure in a farmer’s family,”  Journal of Environmental Protection, 3:1001-1003, DOI: 10.4236/jep.2012.39115.

ABSTRACT: We tested the presence of glyphosate in the urines of a farmer who sprayed a glyphosate based herbicide on his land, and in his family, as his children were born with birth defects that could be due to or promoted by pesticides. Glyphosate residues were measured in urines a day before, during, and two days after spraying, by liquid chromatography-linear ion trap mass spectrometry. Glyphosate reached a peak of 9.5 µg/L in the farmer after spraying, and 2 µg/L were found in him and in one of his children living at a distance from the field, two days after the pulverization. Oral or dermal absorptions could explain the differential pesticide excretions, even in family members at a distance from the fields. A more detailed following of agricultural practices and family exposures should be advocated together with information and recommendations.  FULL TEXT

 

Lewis et al., 2015

Lewis RC, Cantonwine DE, Del Toro LV, Calafat AM, Valentin-Blasini L, Davis MD, Montesano MA, Alshawabkeh AN, Cordero JF, Meeker JD, “Distribution and determinants of urinary biomarkers of exposure to organophosphate insecticides in Puerto Rican pregnant women,” The Science of the Total Environment, 2015, 512-513:337-44, DOI: 10.1016/j.scitotenv.2015.01.059.

ABSTRACT:

Globally, human exposures to organophosphate (OP) insecticides may pose a significant burden to the health of mothers and their developing fetuses. Unfortunately, relevant data is limited in certain areas of the world concerning sources of exposure to OP insecticides in pregnant populations. To begin to address this gap in information for Puerto Rico, we studied repeated measures of urinary concentrations of 10 OP insecticide metabolites among 54 pregnant women from the northern karst region of the island. We also collected demographic data and self-reported information on the consumption of fruits, vegetables, and legumes in the past 48 h before urine collection and home pest-related issues. We calculated the distributions of the urinary biomarkers and compared them to women of reproductive age from the general U.S. population. We also used statistical models accounting for correlated data to assess within-subject temporal variability of the urinary biomarkers and to identify predictors of exposure. We found that for all but two metabolites (para-nitrophenol [PNP], diethylthiophosphate [DETP]), 50th or 95th percentile urinary concentrations (the metric that was used for comparison was based on the biomarker’s detection frequency) of the other eight metabolites (3,5,6-trichloro-2-pyridinol [TCPY], 2-isopropyl-4-methyl-6-hydroxy-pyrimidine, malathion dicarboxylic acid, diethylphosphate, diethyldithiophosphate, dimethylphosphate, dimethylthiophosphate [DMTP], dimethyldithiophosphate) were somewhat lower in our cohort compared with similarly aged women from the continental United States. TCPY, PNP, DETP, and DMTP, which were the only urinary metabolites detected in greater than 50% of the samples, had poor reproducibility (intraclass correlation coefficient range: 0.19-0.28) during pregnancy. Positive predictors of OP insecticide exposure included: age; marital or employment status; consumption of cherries, grape juice, peanuts, peanut butter, or raisins; and residential application of pesticides. Further research is needed to understand what aspects of the predictors identified influence OP insecticide exposure during pregnancy. FULL TEXT

Jensen et al., 2016

Jensen PK, Wujcik CE, McGuire MK, McGuire MA, “Validation of reliable and selective methods for direct determination of glyphosate and aminomethylphosphonic acid in milk and urine using LC-MS/MS,” Journal of Environmental Science and Health – Part B, 2016, 51:4, DOI: 10.1080/03601234.2015.1120619.

ABSTRACT:

Simple high-throughput procedures were developed for the direct analysis of glyphosate [N-(phosphonomethyl)glycine] and aminomethylphosphonic acid (AMPA) in human and bovine milk and human urine matrices. Samples were extracted with an acidified aqueous solution on a high-speed shaker. Stable isotope labeled internal standards were added with the extraction solvent to ensure accurate tracking and quantitation. An additional cleanup procedure using partitioning with methylene chloride was required for milk matrices to minimize the presence of matrix components that can impact the longevity of the analytical column. Both analytes were analyzed directly, without derivatization, by liquid chromatography tandem mass spectrometry using two separate precursor-to-product transitions that ensure and confirm the accuracy of the measured results. Method performance was evaluated during validation through a series of assessments that included linearity, accuracy, precision, selectivity, ionization effects and carryover. Limits of quantitation (LOQ) were determined to be 0.1 and 10 µg/L (ppb) for urine and milk, respectively, for both glyphosate and AMPA. Mean recoveries for all matrices were within 89-107% at three separate fortification levels including the LOQ. Precision for replicates was ≤ 7.4% relative standard deviation (RSD) for milk and ≤ 11.4% RSD for urine across all fortification levels. All human and bovine milk samples used for selectivity and ionization effects assessments were free of any detectable levels of glyphosate and AMPA. Some of the human urine samples contained trace levels of glyphosate and AMPA, which were background subtracted for accuracy assessments. Ionization effects testing showed no significant biases from the matrix. A successful independent external validation was conducted using the more complicated milk matrices to demonstrate method transferability. FULL TEXT

Garry et al., 1996

Garry VF, Schreinemachers D, Harkins ME, Griffith J, “Pesticide appliers, biocides, and birth defects in rural Minnesota,” Environmental Health Perspectives, 1996, 104:4.

ABSTRACT:

Earlier studies by our group suggested the possibility that offspring of pesticide appliers might have increased risks of birth anomalies. To evaluate this hypothesis, 935 births to 34,772 state-licensed, private pesticide appliers in Minnesota occurring between 1989 and 1992 were linked to the Minnesota state birth registry containing 210,723 live births in this timeframe. The birth defect rate for all birth anomalies was significantly increased in children born to private appliers. Specific birth defect categories, circulatory/respiratory, urogenital, and musculoskeletal/integumental, showed significant increases. For the general population and for appliers, the birth anomaly rate differed by corp-growing region. Western Minnesota, a major wheat, sugar beet, and potato growing region, showed the highest rate of birth anomalies per/1000 live births: 30.0 for private appliers versus 26.9 for the general population of the same region. The lowest rates, 23.7/1000 for private appliers versus 18.3/1000 for the general population, occurred in noncorp regions. The highest frequency of use of chlorophenoxy herbicides and fungicides also occurred in western Minnesota. Births in the general population of western Minnesota showed a significant increase in birth anomalies in the same three birth anomaly categories as appliers and for central nervous system anomalies. This increase was most pronounced for infants conceived in the spring. The seasonal effect did not occur in other regions. The male/female sex ratio for the four birth anomaly categories of interest in areas of high phenoxy herbicide/fungicide use is 2.8 for appliers versus 1.5 for the general population of the same region (p = 0.05). In minimal use regions, this ratio is 2.1 for appliers versus 1.7 for the general population. The pattern of excess frequency of birth anomalies by pesticide use, season, and alteration of sex ratio suggests exposure-related effects in appliers and the general population of the crop-growing region of western Minnesota.  FULL TEXT

Garry et al., 2002b

Garry VF, Harkins ME, Erickson LL, Long-Simpson LK, Holland SE, Burroughs BL, “Birth defects, season of conception, and sex of children born to pesticide applicators living in the Red River Valley of Minnesota, USA,” Environmental Health Perspectives, 2002, 110: Supplemental 3.

ABSTRACT:

We previously demonstrated that the frequency of birth defects among children of residents of the Red River Valley (RRV), Minnesota, USA, was significantly higher than in other major agricultural regions of the state during the years 1989-1991, with children born to male pesticide applicators having the highest risk. The present, smaller cross-sectional study of 695 families and 1,532 children, conducted during 1997-1998, provides a more detailed examination of reproductive health outcomes in farm families ascertained from parent-reported birth defects. In the present study, in the first year of life, the birth defect rate was 31.3 births per 1,000, with 83% of the total reported birth defects confirmed by medical records. Inclusion of children identified with birth or developmental disorders within the first 3 years of life and later led to a rate of 47.0 per 1,000 (72 children from 1,532 live births). Conceptions in spring resulted in significantly more children with birth defects than found in any other season (7.6 vs. 3.7%). Twelve families had more than one child with a birth defect (n = 28 children). Forty-two percent of the children from families with recurrent birth defects were conceived in spring, a significantly higher rate than that for any other season. Three families in the kinships defined contributed a first-degree relative other than a sibling with the same or similar birth defect, consistent with a Mendelian inheritance pattern. The remaining nine families did not follow a Mendelian inheritance pattern. The sex ratio of children with birth defects born to applicator families shows a male predominance (1.75 to 1) across specific pesticide class use and exposure categories exclusive of fungicides. In the fungicide exposure category, normal female births significantly exceed male births (1.25 to 1). Similarly, the proportion of male to female children with birth defects is significantly lower (0.57 to 1; p = 0.02). Adverse neurologic and neurobehavioral developmental effects clustered among the children born to applicators of the fumigant phosphine (odds ratio [OR] = 2.48; confidence interval [CI], 1.2-5.1). Use of the herbicide glyphosate yielded an OR of 3.6 (CI, 1.3-9.6) in the neurobehavioral category. Finally, these studies point out that (a) herbicides applied in the spring may be a factor in the birth defects observed and (b) fungicides can be a significant factor in the determination of sex of the children of the families of the RRV. Thus, two distinct classes of pesticides seem to have adverse effects on different reproductive outcomes. Biologically based confirmatory studies are needed. FULL TEXT

Garry et al., 2003

Garry VF, Holland SE, Erickson LL, Burroughs BL, “Male reproductive hormones and thyroid function in pesticide applicators in the Red River Valley of Minnesota,” Journal of Toxicology and Environmental Health – Part A, 2003, 66:11.

ABSTRACT: In the present effort, 144 pesticide applicators and 49 urban control subjects who reported no chronic disease were studied. Applicators provided records of the season’s pesticides used by product, volumes, dates, and methods of application. Blood specimens for examination of hormone levels were obtained in summer and fall. In the herbicide-only applicator group, significant increases in testosterone levels in fall compared to summer and also elevated levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in the fall were noted. With respect to fungicide use, in an earlier cross-sectional epidemiologic study, data demonstrated that historic fungicide use was associated with a significant alteration of the sex ratio of children borne to applicators. As before, among current study subjects it was noted that historic fungicide use was associated with increased numbers of girls being born. Lower mean total testosterone concentrations by quartile were also correlated with increased numbers of live-born female infants. A downward summer to fall seasonal shift in thyroid-stimulating hormone (TSH) concentrations occurred among applicators but not among controls. Farmers who had aerial application of fungicides to their land in the current season showed a significant shift in TSH values (from 1.75 to 1.11 mU/L). Subclinical hypothyroidism was noted in 5/144 applicators (TSH values >4.5 mU/L), but not in urban control subjects. Based on current and past studies, it was concluded that, in addition to pesticide exposure, individual susceptibility and perhaps economic factors may play a supporting role in the reported results.

Back To Top