skip to Main Content

Bibliography Tag: biomonitoring

Eguchi et al., 2017

Eguchi, A., Otake, M., Hanazato, M., Suzuki, N., Matsuno, Y., Nakaoka, H., Todaka, E., & Mori, C.; “Assessment of questionnaire-based PCB exposure focused on food frequency in birth cohorts in Japan;” Environmental Science and Pollution Research International, 2017, 24(4), 3531-3538; DOI: 10.1007/s11356-016-8119-6.

ABSTRACT:

We investigated the relationship between food frequency questionnaire (FFQ) responses and serum polychlorinated biphenyl (PCB) levels of mothers and fathers recruited from the Chiba Regional Center, which is one of the 15 regional centers of the Japan Environment and Children’s Study (mothers: n = 1477, fathers: n = 219). The expected PCB values were estimated from the participants’ FFQ answers and medical records (age, body mass index and number of deliveries). Based on the stepwise forward selection results of Bayesian regression models, age and fish and egg consumption were positively associated with PCB concentrations and a number of deliveries were negatively associated with PCB concentrations in mothers, whereas only age was positively associated with PCB concentrations in fathers.These findings indicated that the estimation of daily dietary intake may be useful for the prediction of PCB concentration for mothers. FULL TEXT

Curl et al., 2019

Curl, C. L., Porter, J., Penwell, I., Phinney, R., Ospina, M., & Calafat, A. M.; “Effect of a 24-week randomized trial of an organic produce intervention on pyrethroid and organophosphate pesticide exposure among pregnant women;” Environment International, 2019, 104957; DOI: 10.1016/j.envint.2019.104957.

ABSTRACT:

BACKGROUND: Introduction of an organic diet can significantly reduce exposure to some classes of pesticides in children and adults, but no long-term trials have been conducted.

OBJECTIVES: To assess the effect of a long-term (24-week) organic produce intervention on pesticide exposure among pregnant women.

METHODS: We recruited 20 women from the Idaho Women, Infants, and Children (WIC) program during their first trimester of pregnancy. Eligible women were nonsmokers aged 18-35 years who reported eating exclusively conventionally grown food. We randomly assigned participants to receive weekly deliveries of either organic or conventional fruits and vegetables throughout their second or third trimesters and collected weekly spot urine samples. Urine samples, which were pooled to represent monthly exposures, were analyzed for biomarkers of organophosphate (OP) and pyrethroid insecticides.

RESULTS: Food diary data demonstrated that 66% of all servings of fruits and vegetables consumed by participants in the “organic produce” group were organic, compared to <3% in the “conventional produce” group. We collected an average of 23 spot samples per participant (461 samples total), which were combined to yield 116 monthly composites. 3-Phenoxybenzoic acid (3-PBA, a non-specific biomarker of several pyrethroids) was detected in 75% of the composite samples, and 3-PBA concentrations were significantly higher in samples collected from women in the conventional produce group compared to the organic produce group (0.95 vs 0.27mug/L, p=0.03). Another pyrethroid biomarker, trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid, was detected more frequently in women in the conventional compared to the organic produce groups (16% vs 4%, p=0.05). In contrast, we observed no statistically significant differences in detection frequency or concentrations for any of the four biomarkers of OP exposure quantified in this trial.

DISCUSSION: To our knowledge, this is the first long-term organic diet intervention study, and the first to include pregnant women. These results suggest that addition of organic produce to an individual’s diet, as compared to conventional produce, significantly reduces exposure to pyrethroid insecticides. FULL TEXT

Aris and Leblanc, 2011

Aris, Aziz, & Leblanc, Samuel; “Maternal and fetal exposure to pesticides associated to genetically modified foods in Eastern Townships of Quebec, Canada.;” Reproductive Toxicology, 2011, 31, 528-533; DOI: 10.1016/j.reprotox.2011.02.004.

ABSTRACT:

Pesticides associated to genetically modified foods (PAGMF), are engineered to tolerate herbicides such as glyphosate (GLYP) and gluphosinate (GLUF) or insecticides such as the bacterial toxin bacillus thuringiensis (Bt). The aim of this study was to evaluate the correlation between maternal and fetal exposure, and to determine exposure levels of GLYP and its metabolite aminomethyl phosphoric acid (AMPA), GLUF and its metabolite 3-methylphosphinicopropionic acid (3-MPPA) and Cry1Ab protein (a Bt toxin) in Eastern Townships of Quebec, Canada. Blood of thirty pregnant women (PW) and thirty-nine nonpregnant women (NPW) were studied. Serum GLYP and GLUF were detected in NPW and not detected in PW. Serum 3-MPPA and CryAb1 toxin were detected in PW, their fetuses and NPW. This is the first study to reveal the presence of circulating PAGMF in women with and without pregnancy, paving the way for a new field in reproductive toxicology including nutrition and utero-placental toxicities. FULL TEXT

Winchester et al., 2019

Winchester, Paul, Reiter, Jill L., Proctor, Cathy, Gerona, Roy R., Avery, Kayleigh D., Bromm, Jennifer R., Elsahy, Deena A, Hadley, Emily A., McGraw, Sara N., & Jones, Dana D., “Glyphosate in 1st Trimester of Pregnancy: Herbicides in the Womb,” 2019, Presented at the Pediatric Academic Societies (PAS) Meeting 2019, 4/24-5/1/2019, Baltimore, MD.

ABSTRACT:

BACKGROUND: Our previous study demonstrated that >90% of pregnant Midwest women had detectable glyphosate (GLY) in their urine. Most glyphosate exposure occurs through food & certain beverages but not through drinking water. Shorter pregnancies, rural address and caffeinated beverages were associated with higher GLY levels. The cohort was small and predominantly Caucasian. The current study was needed to confirm high rates of GLY detection in a racially more diverse high risk population.
OBJECTIVE: Will GLY be detected in a majority of pregnancies regardless of race/ethnicity? Are GLY levels associated with adverse pregnancy outcomes? Do GLY levels vary by season of collection in pregnancy?
DESIGN/METHODS: Prospective observation study. Discarded urine from 1st trimester pregnancies were collected prospectively from a high risk University obstetrical clinic. All pregnancy outcomes and neonatal outcomes were abstracted. Urines were frozen, shipped to analytical lab (USCF, RG) for analysis. Urine GLY (Glyphosate (N(phosphomethyl) glycine) was analyzed via liquid chromatography-tandem mass spectrometry (LC-MS/MS), limit of quantification of 0.1 ng/mL. GLY measured as independent variable was compared to multiple variables using bivariate analysis.
RESULTS: GLY was detected in 99% (186 of 187) pregnancies. Levels varied from 1.004 to 10.31ng/mL with geometric mean 3.264ng/mL. Mean maternal age was 30, with 69% white, 4.2% Hispanic, 12% Black, 3.7% Asian and one “other”. GLY levels did not differ significantly by racial/ethnic group. GLY levels were not significantly difference between preterm and term outcomes, multiple/singleton or between fetal loss and live births. GLY levels were higher with increasing gestation at enrollment with 4-8 weeks GLY 2.73 vs 9-13 weeks 3.51(p=.0098). Significantly higher GLY levels were found in April-July pregnancies vs other months(3.64 vs 3.07 p=.03). NICU admission rates were 85% for preterm and 35% for term. Birth defect rate was12% and 37% had intrauterine drug exposure or NAS. Preterm birth rate was 31%. CONCLUSIONS: Glyphosate was found in virtually all of these high risk pregnancies in the first trimester regardless of race/ethnicity, plurality, fetal loss or gestation at birth. GLY levels rose with increasing gestation in the first trimester suggesting that gestation at measurement impacts GLY levels. Dietary sources contribute to GLY but we did find April-July are associated with higher GLY levels than other months. The fetal epigenetic consequences of 1st trimester GLY exposure remains unknown. FULL TEXT

Oates et al., 2014

Oates, Liza, Cohen, Marc, Braun, Lesley, Schembri, Adrian, & Taskova, Rilka, “Reduction in urinary organophosphate pesticide metabolites in adults after a week-long organic diet,” Environmental Research, 2014, 132, 105-111. DOI: 10.1016/j.envres.2014.03.021.

ABSTRACT:

BACKGROUND: Conventional food production commonly uses organophosphate (OP) pesticides, which can have negative health effects, while organic food is deemed healthier because it is produced without these pesticides. Studies suggest that organic food consumption may significantly reduce OP pesticide exposure in children who have relatively higher pesticide exposure than adults due to their different diets, body weight, behaviour and less efficient metabolism.

OBJECTIVES: A prospective, randomised, crossover study was conducted to determine if an organic food diet reduces organophosphate exposure in adults.

METHODS: Thirteen participants were randomly allocated to consume a diet of at least 80% organic or conventional food for 7 days and then crossed over to the alternate diet. Urinary levels of six dialkylphosphate metabolites were analysed in first-morning voids collected on day 8 of each phase using GC–MS/MS with detection limits of 0.11–0.51μg/L.

RESULTS: The mean total DAP results in the organic phase were 89% lower than in the conventional phase (M=0.032 [SD=0.038] and 0.294 [SD=0.435] respectively, p=0.013). For total dimethyl DAPs there was a 96% reduction (M=0.011 [SD=0.023] and 0.252 [SD=0.403] respectively, p=0.005). Mean total diethyl DAP levels in the organic phase were half those of the conventional phase (M=0.021 [SD=0.020] and 0.042 [SD=0.038] respectively), yet the wide variability and small sample size meant the difference was not statistically significant.

CONCLSUIONS: The consumption of an organic diet for one week significantly reduced OP pesticide exposure in adults. Larger scale studies in different populations are required to confirm these findings and investigate their clinical relevance.

Beranger et al., 2018

Beranger, R., Hardy, E. M., Dexet, C., Guldner, L., Zaros, C., Nougadere, A., Metten, M. A., Chevrier, C., & Appenzeller, B. M. R., “Multiple pesticide analysis in hair samples of pregnant French women: Results from the ELFE national birth cohort,” Environment International, 2018, 120, 43-53. DOI: 10.1016/j.envint.2018.07.023.

ABSTRACT:

BACKGROUND: A growing body of evidence suggests that prenatal exposure to pesticides might impair fetal development. Nonetheless, knowledge about pesticide exposure of pregnant women, especially in Europe, is largely restricted to a limited panel of molecules.

AIM: To characterize the concentration of 140 pesticides and metabolites in hair strands from women in the ELFE French nationwide birth cohort.

METHODS: Among cohort members who gave birth in northeastern and southwestern France in 2011, we selected those with a sufficient available mass of hair (n=311). Bundles of hair 9cm long were collected at delivery. We screened 111 pesticides and 29 metabolites, including 112 selected a priori based on their reported usage or detection in the French environment. The bundles of hair from 47 women were split into three segments to explore the intraindividual variability of the exposure. Intraclass correlation coefficients (ICCs) were computed for the chemicals with a detection frequency >70%.

RESULTS: We detected a median of 43 chemicals per woman (IQR 38-47). Overall, 122 chemicals (>20 chemical families) were detected at least once, including 28 chemicals detected in 70-100% of hair samples. The highest median concentrations were observed for permethrin (median: 37.9pg/mg of hair), p-nitrophenol (13.2pg/mg), and pentachlorophenol (10.0pg/mg). The ICCs for the 28 chemicals studied ranged from 0.59 to 0.94.

CONCLUSION: Pregnant women are exposed to multiple pesticides simultaneously from various chemical families, including chemicals suspected to be reproductive toxicants or endocrine disruptors. The ICCs suggest that the intraindividual variability of pesticide concentrations in hair is lower than its interindividual variability. FULL TEXT

Kongtip et al., 2017

Kongtip, Pornpimol, Nankongnab, Noppanun, Phupancharoensuk, Ratanavadee, Palarach, Chonlada, Sujirarat, Dusit, Sangprasert, Supha, Sermsuk, Malasod, Sawattrakool, Namthip, & Woskie, Susan Renee, “Glyphosate and Paraquat in Maternal and Fetal Serums in Thai Women,” Journal of Agromedicine, 2017, 22(3), 282-289. DOI: 10.1080/1059924x.2017.1319315.

ABSTRACT:

OBJECTIVES: This longitudinal study measured the glyphosate and paraquat concentrations found in maternal and umbilical cord serum in 82 pregnant women who gave birth in three provinces of Thailand.

METHODS: Through questionnaires and biological samples collected at childbirth, factors such as personal characteristics, family members occupation, agricultural activities, and herbicide use in agricultural work were evaluated as predictors of glyphosate and paraquat levels in the pregnant women. Statistical analysis used univariate and binary multiple logistic regression, where the outcome was the probability of exposure to paraquat or glyphosate above the limit of detection associated with occupation and household factors.

RESULTS: The glyphosate concentrations in the pregnant women’s serum at childbirth (median: 17.5, range: 0.2-189.1 ng/mL) were significantly higher (P < .007) than those in the umbilical cord serum (median: 0.2, range: 0.2-94.9 ng/mL). However, the paraquat concentrations in the serum of the pregnant women at childbirth (83% </=limit of detection [LOD], with maximum of 58.3 ng/mL) were similar to those in the umbilical cord serum (80% <LOD, with maximum of 47.6 ng/mL). Women with glyphosate levels >LOD in serum at childbirth were 11.9 times more likely to report work as an agriculturist (P < .001), 3.7 times more likely to live near agricultural areas (P = .006), and 5.9 times more likely to have a family member who worked in agriculture (P < .001). The only factors affecting paraquat exposures in pregnant women at childbirth were reporting the agricultural activity of digging in farm soil and working in the agricultural fields in the third trimester of pregnancy.

CONCLUSIONS: These results show that pregnant women who work in agriculture or live in families that work in agriculture have higher exposures to the herbicides glyphosate and paraquat. The potential for long-term health impacts of these prenatal exposures to children should be evaluated, and greater regulation of the sale and use of herbicides should be considered in Thailand. FULL TEXT

Gillezeau et al., 2019

Gillezeau, Christina, van Gerwen, Maaike, Shaffer, Rachel M, Rana, Iemaan, Zhang, Luoping, Sheppard, Lianne, & Taioli, Emanuela, “The evidence of human exposure to glyphosate: a review,” Environmental Health, 2019, 18(1), 2. DOI: 10.1186/s12940-018-0435-5.

ABSTRACT:

BACKGROUND: Despite the growing and widespread use of glyphosate, a broad-spectrum herbicide and desiccant, very few studies have evaluated the extent and amount of human exposure.

OBJECTIVE: We review documented levels of human exposure among workers in occupational settings and the general population.

METHODS: We conducted a review of scientific publications on glyphosate levels in humans; 19 studies were identified, of which five investigated occupational exposure to glyphosate, 11 documented the exposure in general populations, and three reported on both.

RESULTS: Eight studies reported urinary levels in 423 occupationally and para-occupationally exposed subjects; 14 studies reported glyphosate levels in various biofluids on 3298 subjects from the general population. Average urinary levels in occupationally exposed subjects varied from 0.26 to 73.5 mug/L; environmental exposure urinary levels ranged from 0.16 to 7.6 mug/L. Only two studies measured temporal trends in exposure, both of which show increasing proportions of individuals with detectable levels of glyphosate in their urine over time.

CONCLUSIONS: The current review highlights the paucity of data on glyphosate levels among individuals exposed occupationally, para-occupationally, or environmentally to the herbicide. As such, it is challenging to fully understand the extent of exposure overall and in vulnerable populations such as children. We recommend further work to evaluate exposure across populations and geographic regions, apportion the exposure sources (e.g., occupational, household use, food residues), and understand temporal trends. FULL TEXT

Connolly et al., 2019

Connolly, Alison, Coggins, Marie A, Galea, Karen S, Jones, Kate, Kenny, Laura, & McGowan, Padraic.  “Evaluating Glyphosate Exposure Routes and Their Contribution to Total Body Burden: A Study Among Amenity Horticulturalists,” Annals of Work Exposures and Health, 2019,  DOI: 10.1093/annweh/wxy104. .

ABSTRACT:

OBJECTIVE: To evaluate determinants of dermal and inadvertent ingestion exposure and assess their contribution to total body burden among amenity horticultural users using glyphosate-based pesticide products.

METHODS: A dermal and inadvertent ingestion exposure assessment was completed alongside a biomonitoring study among amenity horticultural workers. Linear mixed effect regression models were elaborated to evaluate determinants of exposure and their contribution to total body burden.

RESULTS: A total of 343 wipe and glove samples were collected from 20 workers across 29 work tasks. Geometric mean (GM) glyphosate concentrations of 0.01, 0.04 and 0.05 microg cm-2 were obtained on wipes from the workers’ perioral region and left and right hands, respectively. For disposable and reusable gloves, respectively, GM glyphosate concentrations of 0.43 and 7.99 microg cm-2 were detected. The combined hand and perioral region glyphosate concentrations explained 40% of the variance in the urinary (microg l-1) biomonitoring data.

CONCLUSION: To the author’s knowledge, this is the first study to have investigated both dermal and inadvertent exposure to glyphosate and their contribution to total body burden. Data show the dermal exposure is the prominent route of exposure in comparison to inadvertent ingestion but inadvertent ingestion may contribute to overall body burden. The study also identified potential exposure to non-pesticide users in the workplace and para-occupational exposures. FULL TEXT

Connolly et al., 2018

Connolly A, Jones K, Basinas I, Galea KS, Kenny L, McGowan P, Coggins MA, “Exploring the half-life of glyphosate in human urine samples,” International Journal of Hygeine and Environmental Health, 2018 (EPub), doi:10.1016/j.ijheh.2018.09.004.

ABSTRACT:

BACKGROUND: The International Agency for Research on Cancer (IARC) has recently classified glyphosate as a Group 2A ‘probably carcinogenic to humans’. Due to this carcinogenic classification and resulting international debate, there is an increased demand for studies evaluating human health effects from glyphosate exposures. There is currently limited information on human exposures to glyphosate and a paucity of data regarding glyphosate’s biological half-life in humans.

OBJECTIVE: This study aims to estimate the human half-life of glyphosate from human urine samples collected from amenity horticulture workers using glyphosate based pesticide products.

METHODS: Full void urine spot samples were collected over a period of approximately 24 h for eight work tasks involving seven workers. The elimination time and estimation of the half-life of glyphosate using three different measurement metrics: the unadjusted glyphosate concentrations, creatinine corrected concentrations and by using Urinary Excretion Rates (UER) (μgL−1, μmol/mol creatinine and UER μgL−1) was calculated by summary and linear interpolation using regression analysis.

RESULTS: This study estimates the human biological half-life of glyphosate as approximately 5 ½, 10 and 7 ¼ hours for unadjusted samples, creatinine corrected concentrations and by using UER (μgL−1, μmol/mol creatinine, UER μgL−1), respectively. The approximated glyphosate half-life calculations seem to have less variability when using the UER compared to the other measuring metrics.

CONCLUSION: This study provides new information on the elimination rate of glyphosate and an approximate biological half-life range for humans. This information can help optimise the design of sampling strategies, as well as assisting in the interpretation of results for human biomonitoring studies involving this active ingredient. The data could also contribute to the development or refinement of Physiologically Based PharmacoKinetic (PBPK) models for glyphosate. FULL TEXT

 

Back To Top