skip to Main Content

Bibliography Tag: cancer

Perro, 2019

Perro, Michelle, “Childhood Leukemia, the Microbiome, and Glyphosate: A Doctor’s Perspective,”, January 15, 2019.


  • Childhood leukemia is on the rise
  • Exposure to pesticides is known to increase the risk of childhood leukemia, as well as other types of cancer
  • New research links an impoverished gut microbiome (bacterial community) and chronic inflammation with increased risk of childhood leukemia
  • Diet-related ways are being sought to improve the microbiome and prevent the inflammation that triggers childhood leukemia
  • Glyphosate herbicides are used on around 90% of GM crops; glyphosate has been classified as a probable carcinogen by the World Health Organization’s cancer agency IARC
  • Exposure to glyphosate-based and other pesticides has been shown to disrupt the gut microbiome in laboratory animals
  • People who eat organic food have been found to have a 25% reduced risk of cancer
  • Clinical experience shows that switching to an organic and non-GMO diet improves people’s health
  • Controlled studies are needed to verify how switching to an organic and non-GMO diet affects the microbiome and certain disease conditions.


Duforestel et al., 2019

Duforestel, Manon, Nadaradjane, Arulraj, Bougras-Cartron, Gwenola, Briand, Joséphine, Olivier, Christophe, Frenel, Jean-Sébastien, Vallette, François M., Lelièvre, Sophie A., & Cartron, Pierre-François; “Glyphosate Primes Mammary Cells for Tumorigenesis by Reprogramming the Epigenome in a TET3-Dependent Manner;” Frontiers in Genetics, 2019, 10; DOI: 10.3389/fgene.2019.00885.


The acknowledgment that pollutants might influence the epigenome raises serious concerns regarding their long-term impact on the development of chronic diseases. The herbicide glyphosate has been scrutinized for an impact on cancer incidence, but reports demonstrate the difficulty of linking estimates of exposure and response analysis. An approach to better apprehend a potential risk impact for cancer is to follow a synergistic approach, as cancer rarely occurs in response to one risk factor. The known influence of glyphosate on estrogen-regulated pathway makes it a logical target of investigation in breast cancer research. We have used nonneoplastic MCF10A cells in a repeated glyphosate exposure pattern over 21 days. Glyphosate triggered a significant reduction in DNA methylation, as shown by the level of 5-methylcytosine DNA; however, in contrast to strong demethylating agent and cancer promoter UP peptide, glyphosate-treated cells did not lead to tumor development. Whereas UP acts through a DNMT1/PCNA/UHRF1 pathway, glyphosate triggered increased activity of ten-eleven translocation (TET)3. Combining glyphosate with enhanced expression of microRNA (miR) 182-5p associated with breast cancer induced tumor development in 50% of mice. Culture of primary cells from resected tumors revealed a luminal B (ER+/PR-/HER2-) phenotype in response to glyphosate-miR182-5p exposure with sensitivity to tamoxifen and invasive and migratory potentials. Tumor development could be prevented either by specifically inhibiting miR 182-5p or by treating glyphosate-miR 182-5p-cells with dimethyloxallyl glycine, an inhibitor of TET pathway. Looking for potential epigenetic marks of TET-mediated gene regulation under glyphosate exposure, we identified MTRNR2L2 and DUX4 genes, the hypomethylation of which was sustained even after stopping glyphosate exposure for 6 weeks. Our findings reveal that low pressure but sustained DNA hypomethylation occurring via the TET pathway primes cells for oncogenic response in the presence of another potential risk factor. These results warrant further investigation of glyphosate-mediated breast cancer risk. FULL TEXT

Pahwa et al., 2019

Pahwa, M., Beane Freeman, L. E., Spinelli, J. J., Blair, A., McLaughlin, J. R., Zahm, S. H., Cantor, K. P., Weisenburger, D. D., Punam Pahwa, P. P., Dosman, J. A., Demers, P. A., & Harris, S. A.; “Glyphosate use and associations with non-Hodgkin lymphoma major histological sub-types: findings from the North American Pooled Project;” Scandinavian Journal of Work, Environment, & Health, 2019; DOI: 10.5271/sjweh.3830.



Some epidemiological studies have suggested positive associations between glyphosate use and non-Hodgkin lymphoma (NHL), but evidence is inconsistent and few studies could evaluate histological sub-types. Here, associations between glyphosate use and NHL incidence overall and by histological sub-type were evaluated in a pooled analysis of case-control studies.


The analysis included 1690 NHL cases [647 diffuse large B-cell lymphoma (DLBCL), 468 follicular lymphoma (FL), 171 small lymphocytic lymphoma (SLL), and 404 other sub-types] and 5131 controls. Logistic regression was used to estimate adjusted odds ratios (OR) and 95% confidence intervals (CI) for NHL overall and sub-types with self-reported ever/never, duration, frequency, and lifetime-days of glyphosate use.


Subjects who ever used glyphosate had an excess of NHL overall (OR 1.43, 95% CI 1.11-1.83). After adjustment for other pesticides, the OR for NHL overall with “ever use” was 1.13 (95% CI 0.84-1.51), with a statistically significant association for handling glyphosate >2 days/year (OR 1.73, 95% CI 1.02-2.94, P-trend=0.2). In pesticide-adjusted sub-type analyses, the ordinal measure of lifetime-days was statistically significant (P=0.03) for SLL, and associations were elevated, but not statistically significant, for ever years or days/year of use. Handling glyphosate >2 days/year had an excess of DLBCL (OR 2.14, 95% CI 1.07-4.28; P-trend=0.2). However, as with the other sub-types, consistent patterns of association across different metrics were not observed.


There was some limited evidence of an association between glyphosate use and NHL in this pooled analysis. Suggestive associations, especially for SLL, deserve additional attention. FULL TEXT

International Federation of Gynecology and Obstetrics, 2019

International Federation of Gynecology and Obstetrics; “Removal of glyphosate from global usage: A Statement by the FIGO Reproductive and Developmental Environmental Health Committee,” Available at:, Date posted: 07/31/2019, Date accessed: 8/6/2019.


The International Federation of Gynecology and Obstetrics (FIGO), a professional group that advocates for OB/GYN groups around the world.   They work with the World Health Organization and United Nations to consult on women and children’s health and wellness issues, recommends that all glyphosate use be phased out due to “the recognised impact on the health and well-being of women and newborn children worldwide.”

FIGO points out the conflicting opinions about the safety of glyphosate, as evidenced by the EPA and IARC’s diametric designations as “non-carcinogenic” and “probably carcinogenic,” respectively.  But, they argue, given that the most recent meta-analysis from February 2019 found “a compelling link between non-Hodgkins lymphoma and glyphosate,” and rodent studies have demonstrated the potential for transgenerational epigenetic changes,  FIGO urges governments to apply the precautionary principal and prioritize “establishing safety, now and across generations, prior to exposure to chemical products.” They conclude: “We recommend that glyphosate exposure to populations should end with a full global phase out.” FULL TEXT

Stur et al., 2019

Stur, E., Aristizabal-Pachon, A. F., Peronni, K. C., Agostini, L. P., Waigel, S., Chariker, J., Miller, D. M., Thomas, S. D., Rezzoug, F., Detogni, R. S., Reis, R. S. D., Silva Junior, W. A., & Louro, I. D.; “Glyphosate-based herbicides at low doses affect canonical pathways in estrogen positive and negative breast cancer cell lines;” Plos One, 2019, 14(7), e0219610; DOI: 10.1371/journal.pone.0219610.


Glyphosate is a broad-spectrum herbicide that is used worldwide. It represents a potential harm to surface water, and when commercially mixed with surfactants, its uptake is greatly magnified. The most well-known glyphosate-based product is Roundup. This herbicide is potentially an endocrine disruptor and many studies have shown the cytotoxicity potential of glyphosate-based herbicides. In breast cancer (BC) cell lines it has been demonstrated that glyphosate can induce cellular proliferation via estrogen receptors. Therefore, we aimed to identify gene expression changes in ER+ and ER- BC cell lines treated with Roundup and AMPA, to address changes in canonical pathways that would be related or not with the ER pathway, which we believe could interfere with cell proliferation. Using the Human Transcriptome Arrays 2.0, we identified gene expression changes in MCF-7 and MDA-MB-468 exposed to low concentrations and short exposure time to Roundup Original and AMPA. The results showed that at low concentration (0.05% Roundup) and short exposure (48h), both cell lines suffered deregulation of 11 canonical pathways, the most important being cell cycle and DNA damage repair pathways. Enrichment analysis showed similar results, except that MDA-MB-468 altered mainly metabolic processes. In contrast, 48h 10mM AMPA showed fewer differentially expressed genes, but also mainly related with metabolic processes. Our findings suggest that Roundup affects survival due to cell cycle deregulation and metabolism changes that may alter mitochondrial oxygen consumption, increase ROS levels, induce hypoxia, damage DNA repair, cause mutation accumulation and ultimately cell death. To our knowledge, this is the first study to analyze the effects of Roundup and AMPA on gene expression in triple negative BC cells. Therefore, we conclude that both compounds can cause cellular damage at low doses in a relatively short period of time in these two models, mainly affecting cell cycle and DNA repair. FULL TEXT

Wang et al., 2019

Wang, L., Deng, Q., Hu, H., Liu, M., Gong, Z., Zhang, S., Xu-Monette, Z. Y., Lu, Z., Young, K. H., Ma, X., & Li, Y.; “Glyphosate induces benign monoclonal gammopathy and promotes multiple myeloma progression in mice;” Journal of Hematology & Oncology, 2019, 12(1), 70; DOI: 10.1186/s13045-019-0767-9.


BACKGROUND: Glyphosate is the most widely used herbicide in the USA and worldwide. There has been considerable debate about its carcinogenicity. Epidemiological studies suggest that multiple myeloma (MM) and non-Hodgkin lymphoma (NHL) have a positive and statistically significant association with glyphosate exposure. As a B cell genome mutator, activation-induced cytidine deaminase (AID) is a key pathogenic player in both MM and B cell NHL.

METHODS: Vk*MYC is a mouse line with sporadic MYC activation in germinal center B cells and considered as the best available MM animal model. We treated Vk*MYC mice and wild-type mice with drinking water containing 1000 mg/L of glyphosate and examined animals after 72 weeks.

RESULTS: Vk*MYC mice under glyphosate exposure developed progressive hematological abnormalities and plasma cell neoplasms such as splenomegaly, anemia, and high serum IgG. Moreover, glyphosate caused multiple organ dysfunction, including lytic bone lesions and renal damage in Vk*MYC mice. Glyphosate-treated wild-type mice developed benign monoclonal gammopathy with increased serum IgG, anemia, and plasma cell presence in the spleen and bone marrow. Finally, glyphosate upregulated AID in the spleen and bone marrow of both wild-type and Vk*MYC mice.

CONCLUSIONS: These data support glyphosate as an environmental risk factor for MM and potentially NHL and implicate a mechanism underlying the B cell-specificity of glyphosate-induced carcinogenesis observed epidemiologically. FULL TEXT

Soffritti et al., 2002

Soffritti, Morando, Belpoggi, Fiorella, Minardi, Franco, & Maltoni, Cesare; “Ramazzini Foundation Cancer Program: History and Major Projects, Life-Span Carcinogenicity Bioassay Design, Chemicals Studied, and Results;” Annals of the New York Academy of Sciences, 2002, 982, 26-45.


The Ramazzini Foundation research program was started over thirty years ago. The features of this program are: (1) systematic and integrated project design; (2) consistency over time; (3) homogeneity of approach: key members of the team remain unchanged; and (4) choice to work on new frontiers of scientific research. The program centers mainly on three projects: Project 1: experimental carcinogenicity bioassays; Project 2: experimental anticarcinogenesis assays to identify factors and active principles (compounds) capable of opposing the onset of tumors while being suitable for preventive/ chemopreventive intervention; Project 3: epidemiological studies, both descriptive and analytical, on tumor incidence and mortality in persons professionally and environmentally exposed to industrial carcinogenic risks. The project involving experimental carcinogenicity bioassays for the identification of exogenous carcinogens (environmental and industrial above all) began in 1966. This project has included 398 experimental bioassays on 200 compounds/ agents using some 148,000 animals monitored until their spontaneous death. Among the studies already concluded, 47 agents have shown “clear evidence” of carcinogenicity. The results have demonstrated for the first time that (1) vinyl chloride can cause liver angiosarcoma as well as other tumors; (2) benzene is carcinogenic in experimental animals for various tissues and organs; (3) formaldehyde may produce lymphomas and leukemias; and (4) methyl-tertbutyl ether (MTBE), the most common oxygenated additive used in gasolines, can cause lymphomas/leukemias. Many of the results achieved have led to the introduction of norms and measures of primary prevention. FULL TEXT

Presutti et al., 2016

Presutti, R., Harris, S. A., Kachuri, L., Spinelli, J. J., Pahwa, M., Blair, A., Zahm, S. H., Cantor, K. P., Weisenburger, D. D., Pahwa, P., McLaughlin, J. R., Dosman, J. A., & Freeman, L. B., “Pesticide exposures and the risk of multiple myeloma in men: An analysis of the North American Pooled Project,” International Journal of Cancer, 2016, 139(8), 1703-1714. DOI: 10.1002/ijc.30218.


Multiple myeloma (MM) has been consistently linked with agricultural activities, including farming and pesticide exposures. Three case-control studies in the United States and Canada were pooled to create the North American Pooled Project (NAPP) to investigate associations between pesticide use and haematological cancer risk. This analysis used data from 547 MM cases and 2700 controls. Pesticide use was evaluated as follows: ever/never use; duration of use (years); and cumulative lifetime-days (LD) (days/year handled x years of use). Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using logistic regression adjusted for age, province/state of residence, use of proxy respondents and selected medical conditions. Increased MM risk was observed for ever use of carbaryl (OR = 2.02, 95% CI = 1.28-3.21), captan (OR = 1.98, 95% CI = 1.04-3.77) and DDT (OR = 1.44, 95% CI = 1.05-1.97). Using the Canadian subset of NAPP data, we observed a more than threefold increase in MM risk (OR = 3.18, 95% CI = 1.40-7.23) for </=10 cumulative LD of carbaryl use. The association was attenuated but remained significant for >10 LD of carbaryl use (OR = 2.44; 95% CI = 1.05-5.64; ptrend = 0.01). For captan, </=17.5 LD of exposure was also associated with a more than threefold increase in risk (OR = 3.52, 95% CI = 1.32-9.34), but this association was attenuated in the highest exposure category of >17.5 LD (OR = 2.29, 95% CI = 0.81-6.43; ptrend = 0.01). An increasing trend (ptrend = 0.04) was observed for LD of DDT use (LD > 22; OR = 1.92, 95% CI = 0.95-3.88). In this large North American study of MM and pesticide use, we observed significant increases in MM risk for use of carbaryl, captan and DDT. FULL TEXT

Olsson and Brandt, 1988

Olsson, H., & Brandt, L., “Risk of non-Hodgkin’s lymphoma among men occupationally exposed to organic solvents,” Scandinavian Journal of Work and Environmental Health, 1988, 14(4), 246-251.


An occupational history of exposure to organic solvents, defined as daily occupational exposure for at least one year, was more common among 167 men with newly diagnosed non-Hodgkin’s lymphoma than among 130 healthy referents from the general population (38 versus 14%). Categorization in five-year age groups gave 3.3 as a Mantel-Haenszel estimate of the odds ratio (95% CI 1.9-5.8). The odds ratio was 6.5 (95% CI 3.2-13.3) for localized supradiaphragmatic tumors and 2.3 (95% CI 1.3-4.3) for other lymphoma presentations. In a logistic model including age and organic solvent, phenoxy acid, and chlorophenol exposure, it could be shown that solvent exposure was an independent risk factor and that no important interaction occurred between the risk factors. With increasing duration of exposure there was a significantly increased risk of lymphoma, a finding implying a dose-response relationship. There was no significant difference in tumor histology between the exposed and unexposed patients. These findings support the concept that occupational exposure to organic solvents is a risk factor for non-Hodgkin’s lymphoma. The results also confirm a strong association between such exposure and an initial supradiaphragmatic location of the lymphomas.


Nordstrom et al., 1998

Nordstrom, M., Hardell, L., Magnuson, A., Hagberg, H., & Rask-Anderson, A., “Occupational exposures, animal exposure and smoking as risk factors for hairy cell leukaemia evaluated in a case-control study,” British Journal of Cancer, 1998, 77(11), 2048-2052.


To evaluate occupational exposures as risk factors for hairy cell leukaemia (HCL), a population-based case-control study on 121 male HCL patients and 484 controls matched for age and sex was conducted. Elevated odds ratio (OR) was found for exposure to farm animals in general: OR 2.0, 95% confidence interval (Cl) 1.2-3.2. The ORs were elevated for exposure to cattle, horse, hog, poultry and sheep. Exposure to herbicides (OR 2.9, Cl 1.4-5.9), insecticides (OR 2.0, Cl 1.1-3.5), fungicides (OR 3.8, Cl 1.4-9.9) and impregnating agents (OR 2.4, Cl 1.3-4.6) also showed increased risk. Certain findings suggested that recall bias may have affected the results for farm animals, herbicides and insecticides. Exposure to organic solvents yielded elevated risk (OR 1.5, Cl 0.99-2.3), as did exposure to exhaust fumes (OR 2.1, Cl 1.3-3.3). In an additional multivariate model, the ORs remained elevated for all these exposures with the exception of insecticides. We found a reduced risk for smokers with OR 0.6 (Cl 0.4-1.1) because of an effect among non-farmers.  FULL TEXT

Back To Top