skip to Main Content

Bibliography Tag: cancer

Lamure et al., 2019

Lamure, S., Carles, C., Aquereburu, Q., Quittet, P., Tchernonog, E., Paul, F., Jourdan, E., Waultier, A., Defez, C., Belhadj, I., Sanhes, L., Burcheri, S., Donadio, D., Exbrayat, C., Saad, A., Labourey, J. L., Baldi, I., Cartron, G., & Fabbro-Peray, P., “Association of Occupational Pesticide Exposure With Immunochemotherapy Response and Survival Among Patients With Diffuse Large B-Cell Lymphoma,” JAMA Network Open, 2019, 2(4), e192093. DOI: 10.1001/ jamanetworkopen.2019.2093.

ABSTRACT:

IMPORTANCE: Professional use of pesticides is a risk factor for non-Hodgkin lymphoma. The main biological mechanisms of pesticides and chemotherapy are genotoxicity and reactive oxygen species generation. Cellular adaptation among patients exposed to low doses of genotoxic and oxidative compounds might hinder chemotherapy efficiency in patients with lymphoma.

OBJECTIVE: To examine the association of occupational exposure to pesticides with immunochemotherapy response and survival among patients treated for diffuse large B-cell lymphoma.

DESIGN, SETTING, AND PARTICIPANTS: This retrospective cohort study assessed patients treated from July 1, 2010, to May 31, 2015, for diffuse large B-cell lymphoma, with a 2-year follow-up. The study took place at 6 university and nonuniversity hospitals in Languedoc-Roussillon, France. A total of 404 patients with newly diagnosed diffuse large B-cell lymphoma treated with anthracycline-based immunochemotherapy were included before the study began. Occupational history was reconstructed for 244 patients and analyzed with the PESTIPOP French job-exposure matrix to determine likelihood of occupational exposure to pesticides. Analysis of the data was performed from July 15, 2017, to July 15, 2018.

MAIN OUTCOMES AND MEASURES: Treatment failure (ie, partial response, stable disease, disease progression, or interruption for toxic effects) rate, 2-year event-free survival, and overall survival between exposed and nonexposed patients after adjustment for confounding factors.

RESULTS: A total of 244 patients (mean [SD] age, 61.3 [15.2] years; 153 [62.7%] male) had complete occupational data. Of these patients, 67 (27.4%) had occupational exposure to pesticides, with 38 exposed through agricultural occupations. Occupational exposure was not associated with clinical and biological characteristics at diagnosis. Occupationally exposed patients had a significantly higher treatment failure rate (22.4% vs 11.3%; P = .03; adjusted odds ratio [AOR] for confounding factors, 3.0; 95% CI, 1.3-6.9); this difference was higher among patients with exposing agricultural occupations compared with other patients (29.0% vs 11.7%; AOR, 5.1; 95% CI, 2.0-12.8). Two-year event-free survival was 70% in the occupationally exposed group vs 82% in the unexposed group (adjusted hazard ratio [AHR] for confounding factors, 2.2; 95% CI, 1.3-3.9). Among patients with exposing agricultural occupations compared with other patients, the difference was more pronounced (2-year event-free survival, 56% vs 83%; AHR, 3.5; 95% CI, 1.9-6.5). Similarly, 2-year overall survival was lower in the group of patients with exposing agricultural occupations compared with other patients (81% vs 92%; AHR, 3.9; 95% CI, 1.5-10.0).

CONCLUSIONS AND RELEVANCE: This retrospective study showed that agricultural occupational exposure to pesticides was associated with treatment failure, event-free survival, and overall survival among patients with diffuse large B-cell lymphoma. FULL TEXT

Kaufman et al., 2009

Kaufman, D. W., Anderson, T. E., & Issaragrisil, S., “Risk factors for leukemia in Thailand,” Annals of Hematology, 2009, 88(11), 1079-1088. DOI: 10.1007/s00277-009-0731-9.

ABSTRACT:

A case-control study of adult-onset leukemia was conducted in Bangkok, Thailand to explore the contribution of cellular telephone use and other factors to the etiology of the disease; 180 cases (87 acute myeloblastic leukemia, 40 acute lymphoblastic leukemia, 44 chronic myelogenous leukemia, eight chronic lymphocytic leukemia, one unclassified acute leukemia) were compared with 756 age- and sex-matched hospital controls. Data were obtained by interview; odds ratios (ORs) were estimated by unconditional logistic regression. There was no clear association with cellular telephone phone use, but durations were relatively short (median 24-26 months), and there was a suggestion that risk may be increased for those with certain usage practices (ORs, 1.8-3.0 with lower confidence intervals >1.0) and those who used GSM service (OR, 2.1; 95% confidence interval, 1.1-4.0). Myeloid leukemia (acute and chronic combined) was associated with benzene (OR, 3.9; 95% confidence interval, 1.3-11), a nonspecific group of other solvents (2.3; 1.1-4.9), occupational pesticides that were mostly unspecified (3.8; 2.1-7.1), and working with or near powerlines (4.3; 1.3-15). No associations were found for diagnostic X-rays, cigarette smoking, or other occupational exposures.

Karunanayake et al., 2008

Karunanayake, C. P., McDuffie, H. H., Dosman, J. A., Spinelli, J. J., & Pahwa, P., “Occupational exposures and non-Hodgkin’s lymphoma: Canadian case-control study,” Environ Health, 2008, 7, 44. DOI: 10.1186/1476-069X-7-44.

ABSTRACT:

BACKGROUND: The objective was to study the association between Non-Hodgkin’s Lymphoma (NHL) and occupational exposures related to long held occupations among males in six provinces of Canada.

METHODS: A population based case-control study was conducted from 1991 to 1994. Males with newly diagnosed NHL (ICD-10) were stratified by province of residence and age group. A total of 513 incident cases and 1506 population based controls were included in the analysis. Conditional logistic regression was conducted to fit statistical models.

RESULTS: Based on conditional logistic regression modeling, the following factors independently increased the risk of NHL: farmer and machinist as long held occupations; constant exposure to diesel exhaust fumes; constant exposure to ionizing radiation (radium); and personal history of another cancer. Men who had worked for 20 years or more as farmer and machinist were the most likely to develop NHL.

CONCLUSION: An increased risk of developing NHL is associated with the following: long held occupations of faer and machinist; exposure to diesel fumes; and exposure to ionizing radiation (radium). The risk of NHL increased with the duration of employment as a farmer or machinist.

FULL TEXT

Pahwa et al., 2012

Pahwa, M., Harris, S. A., Hohenadel, K., McLaughlin, J. R., Spinelli, J. J., Pahwa, P., Dosman, J. A., & Blair, A., “Pesticide use, immunologic conditions, and risk of non-Hodgkin lymphoma in Canadian men in six provinces,” International Journal of Cancer, 2012, 131(11), 2650-2659. DOI: 10.1002/ijc.27522.

ABSTRACT:

Pesticide exposures and immune suppression have been independently associated with the risk of non-Hodgkin lymphoma (NHL), but their joint effect has not been well explored. Data from a case-control study of men from six Canadian provinces were used to evaluate the potential effect modification of asthma, allergies, or asthma and allergies and hay fever combined on NHL risk from use of: (i) any pesticide; (ii) any organochlorine insecticide; (iii) any organophosphate insecticide; (iv) any phenoxy herbicide; (v) selected individual pesticides [1,1′-(2,2,2-trichloroethylidene)bis[4-chlorobenzene]; 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT), malathion, (4-chloro-2-methylphenoxy)acetic acid (MCPA), mecoprop, and (2,4-dichlorophenoxy)acetic acid (2,4-D); and (vi) from the number of potentially carcinogenic pesticides. Incident NHL cases (n = 513) diagnosed between 1991 and 1994 were recruited from provincial cancer registries and hospitalization records and compared to 1,506 controls. A stratified analysis was conducted to calculate odds ratios (ORs) adjusted for age, province, proxy respondent, and diesel oil exposure. Subjects with asthma, allergies, or hay fever had non-significantly elevated risks of NHL associated with use of MCPA (OR = 2.67, 95% confidence interval [CI]: 0.90-7.93) compared to subjects without any of these conditions (OR = 0.81, 95% CI: 0.39-1.70). Conversely, those with asthma, allergies, or hay fever who reported use of malathion had lower risks of NHL (OR = 1.25, 95% CI: 0.69-2.26) versus subjects with none of these conditions (OR = 2.44, 95% CI: 1.65-3.61). Similar effects were observed for asthma and allergies evaluated individually. Although there were some leads regarding effect modification by these immunologic conditions on the association between pesticide use and NHL, small numbers, measurement error and possible recall bias limit interpretation of these results. FULL TEXT

 

Zhang et al., 2019a

Zhang, Luoping, Rana, Iemaan, Shaffer, Rachel M., Taioli, Emanuela, & Sheppard, Lianne, “Exposure to Glyphosate-Based Herbicides and Risk for Non-Hodgkin Lymphoma: A Meta-Analysis and Supporting Evidence,” Mutation Research/Reviews in Mutation Research, In Press, 2019. DOI: 10.1016/j.mrrev.2019.02.001.

ABSTRACT:

Glyphosate is the most widely used broad-spectrum systemic herbicide in the world. Recent evaluations of the carcinogenic potential of glyphosate-based herbicides (GBHs) by various regional, national, and international agencies have engendered controversy. We investigated whether there was an association between high cumulative exposures to GBHs and increased risk of non-Hodgkin lymphoma (NHL) in humans. We conducted a new meta-analysis that included the most recent update of the Agricultural Health Study (AHS) cohort published in 2018 along with five case-control studies. Using the highest exposure groups when available in each study, we report the overall meta-relative risk (meta-RR) of NHL in GBH-exposed individuals was increased by 41% (meta-RR = 1.41, 95% CI, confidence interval: 1.13–1.75). For comparison, we also performed a secondary meta-analysis using high-exposure groups with the earlier AHS (2005), and we determined a meta-RR for NHL of 1.45 (95% CI: 1.11–1.91), which was higher than the meta-RRs reported previously. Multiple sensitivity tests conducted to assess the validity of our findings did not reveal meaningful differences from our primary estimated meta-RR. To contextualize our findings of an increased NHL risk in individuals with high GBH exposure, we reviewed available animal and mechanistic studies, which provided supporting evidence for the carcinogenic potential of GBH. We documented further support from studies of malignant lymphoma incidence in mice treated with pure glyphosate, as well as potential links between GBH exposure and immunosuppression, endocrine disruption, and genetic alterations that are commonly associated with NHL. Overall, in accordance with evidence from experimental animal and mechanistic studies, our current meta-analysis of human epidemiological studies suggests a compelling link between exposures to GBHs and increased risk for NHL. FULL TEXT

Ward, 2018

Ward, E. M., “Glyphosate Use and Cancer Incidence in the Agricultural Health Study: An Epidemiologic Perspective,” Journal of the National Cancer Institute, 2018, 110(5), 446-447. DOI: 10.1093/jnci/djx247.

ABSTRACT:

Not Available.  FULL TEXT

Tarazona et al., 2017

Tarazona, J. V., Court-Marques, D., Tiramani, M., Reich, H., Pfeil, R., Istace, F., & Crivellente, F., “Glyphosate toxicity and carcinogenicity: a review of the scientific basis of the European Union assessment and its differences with IARC,” Archives of Toxicology, 2017, 91(8), 2723-2743. DOI: 10.1007/s00204-017-1962-5.

ABSTRACT:

Glyphosate is the most widely used herbicide worldwide. It is a broad spectrum herbicide and its agricultural uses increased considerably after the development of glyphosate-resistant genetically modified (GM) varieties. Since glyphosate was introduced in 1974, all regulatory assessments have established that glyphosate has low hazard potential to mammals, however, the International Agency for Research on Cancer (IARC) concluded in March 2015 that it is probably carcinogenic. The IARC conclusion was not confirmed by the EU assessment or the recent joint WHO/FAO evaluation, both using additional evidence. Glyphosate is not the first topic of disagreement between IARC and regulatory evaluations, but has received greater attention. This review presents the scientific basis of the glyphosate health assessment conducted within the European Union (EU) renewal process, and explains the differences in the carcinogenicity assessment with IARC. Use of different data sets, particularly on long-term toxicity/carcinogenicity in rodents, could partially explain the divergent views; but methodological differences in the evaluation of the available evidence have been identified. The EU assessment did not identify a carcinogenicity hazard, revised the toxicological profile proposing new toxicological reference values, and conducted a risk assessment for some representatives uses. Two complementary exposure assessments, human-biomonitoring and food-residues-monitoring, suggests that actual exposure levels are below these reference values and do not represent a public concern. FULL TEXT

Rice et al., 2018

Rice, J.R., Dunlap, P., Ramaiahgari, S., Ferguson, S., Smith-Roe, S.L., & DeVito, M., “Poster: Effects of Glyphosate and its Formulations on Markers of Oxidative Stress and Cell Viability in HepaRG and HaCaT Cell Lines, 2018, Presented at the Society of Toxicology Conference.

ABSTRACT:

Glyphosate (GLY) is the active ingredient found in herbicide formulations worldwide. GLY is toxic to plants by disrupting the shikimate amino acid synthesis pathway. The present day intensive use of GLY began with the introduction of GLY-resistant crops in the late 1990s. Although GLY has a low toxicity profile for humans and mammals, conflicting reports exist as to whether it poses a cancer risk for humans. The USEPA and European regulatory agencies have described GLY as unlikely to pose a carcinogenic hazard to humans. However, the International Agency for Research on Cancer (IARC) has classified GLY as “probably carcinogenic to humans”.

IARC proposed that oxidative stress may be a mechanism by which GLY could potentially cause cancer. To address this hypothesis, we are testing GLY in human cell lines using several assays that detect reactive oxygen species (ROS) or their effects. Studies were designed to compare the point of departure for the effects of GLY on cell viability (CellTiter-Glo assay) to the point of departure for effects in oxidative damage assays. We also directly compared the effects of GLY versus GLY salts, as well as GLY and adjunct active ingredients versus formulations. We used a high content, 384-well plate approach to generate extensive dose-response curves for multiple comparisons.

Assays (CellTiter-Glo, ROS-Glo, and JC10) were performed after 1 or 24 h of exposure to test articles. GLY and GLY isopropylamine decreased cell viability and altered mitochondrial membrane potential (MMP) at ≥ 10 mM, but did not affect ROS production. The formulations were more potent than GLY alone. Cell viability and MMP were significantly altered at 1 h by the formulations. Based on GLY concentrations, these mixtures were over 1000x more potent than GLY alone. In contrast to the robust induction of ROS by positive controls at both time points, formulations had no effect on ROS at 1 h and showed a marginal increase in ROS at 24 h. These data suggest that GLY does not induce oxidative stress. In addition, the formulations marginally increased oxidative stress only after significant loss of cell viability. The results were very similar for both HepaRG and HaCaT cell lines, suggesting that xenobiotic metabolism has little impact on cell viability and oxidative stress induced by these chemicals. FULL TEXT

Martin et al., 2018

Martin, F. L., Martinez, E. Z., Stopper, H., Garcia, S. B., Uyemura, S. A., & Kannen, V., “Increased exposure to pesticides and colon cancer: Early evidence in Brazil,” Chemosphere, 2018, 209, 623-631. DOI: 10.1016/j.chemosphere.2018.06.118.

ABSTRACT:

Environmental factors may increase colon cancer (CC) risk. It has been suggested that pesticides could play a significant role in the etiology of this malignancy. As agriculture is one of the mainstays of the Brazilian economy, this country has become the largest pesticides consumer worldwide. The CC burden is also increasing in Brazil. Herein, we examined data from the Brazilian Federal Government to determine whether CC mortality and pesticide consumption may be associated. Database of the Ministry of Health provided CC mortality data in Brazil, while pesticide usage was accessed at the website of Brazilian Institute of Environment and Renewable Natural Resources. The CC mortality in the Brazilian states was calculated as standard mortality rates (SMR). All Bayesian analysis was performed using a Markov chain Monte Carlo method in WinBUGS software. We observed that CC mortality has exhibited a steady increase for more than a decade, which correlated with the amount of sold pesticides in the country. Both observations are concentrated in the Southern and the Southeast regions of Brazil. Although ecological studies like ours have methodological limitations, the current dataset suggests the possibility that pesticide exposure may be a risk factor for CC. It warrants further investigation.

Henner and Backhaus, 2019

Hollert, Henner, & Backhaus, Thomas, “Some food for thought: a short comment on Charles Benbrook´s paper ‘How did the US EPA and IARC reach diametrically opposed conclusions on the genotoxicity of glyphosate-based herbicides?’ and its implications,” Environmental Sciences Europe, 2019, 31(1). DOI: 10.1186/s12302-019-0187-z.

ABSTRACT:

Not available.  FULL TEXT

Back To Top