skip to Main Content

Bibliography Tag: cumulative toxicity

Schulz et al., 2021

Schulz, R., Bub, S., Petschick, L. L., Stehle, S., & Wolfram, J.; “Applied pesticide toxicity shifts toward plants and invertebrates, even in GM crops;” Science, 2021, 372(6537), 81-84; DOI: 10.1126/science.abe1148.


Pesticide impacts are usually discussed in the context of applied amounts while disregarding the large but environmentally relevant variations in substance-specific toxicity. Here, we systemically interpret changes in the use of 381 pesticides over 25 years by considering 1591 substance-specific acute toxicity threshold values for eight nontarget species groups. We find that the toxicity of applied insecticides to aquatic invertebrates and pollinators has increased considerably—in sharp contrast to the applied amount—and that this increase has been driven by highly toxic pyrethroids and neonicotinoids, respectively. We also report increasing applied toxicity to aquatic invertebrates and pollinators in genetically modified (GM) corn and to terrestrial plants in herbicide-tolerant soybeans since approximately 2010. Our results challenge the claims of a decrease in the environmental impacts of pesticide use. FULL TEXT

Williams et al., 2000

Williams, G. M., Kroes, R., & Munro, I. C.; “Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans;” Regulatory Toxicology and Pharmacology, 2000, 31(2 Pt 1), 117-165; DOI: 10.1006/rtph.1999.1371.


Reviews on the safety of glyphosate and Roundup herbicide that have been conducted by several regulatory agencies and scientific institutions worldwide have concluded that there is no indication of any human health concern. Nevertheless, questions regarding their safety are periodically raised. This review was undertaken to produce a current and comprehensive safety evaluation and risk assessment for humans. It includes assessments of glyphosate, its major breakdown product [aminomethylphosphonic acid (AMPA)], its Roundup formulations, and the predominant surfactant [polyethoxylated tallow amine (POEA)] used in Roundup formulations worldwide. The studies evaluated in this review included those performed for regulatory purposes as well as published research reports. The oral absorption of glyphosate and AMPA is low, and both materials are eliminated essentially unmetabolized. Dermal penetration studies with Roundup showed very low absorption. Experimental evidence has shown that neither glyphosate nor AMPA bioaccumulates in any animal tissue. No significant toxicity occurred in acute, subchronic, and chronic studies. Direct ocular exposure to the concentrated Roundup formulation can result in transient irritation, while normal spray dilutions cause, at most, only minimal effects. The genotoxicity data for glyphosate and Roundup were assessed using a weight-of-evidence approach and standard evaluation criteria. There was no convincing evidence for direct DNA damage in vitro or in vivo, and it was concluded that Roundup and its components do not pose a risk for the production of heritable/somatic mutations in humans. Multiple lifetime feeding studies have failed to demonstrate any tumorigenic potential for glyphosate. Accordingly, it was concluded that glyphosate is noncarcinogenic. Glyphosate, AMPA, and POEA were not teratogenic or developmentally toxic. There were no effects on fertility or reproductive parameters in two multigeneration reproduction studies with glyphosate. Likewise there were no adverse effects in reproductive tissues from animals treated with glyphosate, AMPA, or POEA in chronic and/or subchronic studies. Results from standard studies with these materials also failed to show any effects indicative of endocrine modulation. Therefore, it is concluded that the use of Roundup herbicide does not result in adverse effects on development, reproduction, or endocrine systems in humans and other mammals. For purposes of risk assessment, no-observed-adverse-effect levels (NOAELs) were identified for all subchronic, chronic, developmental, and reproduction studies with glyphosate, AMPA, and POEA. Margins-of-exposure for chronic risk were calculated for each compound by dividing the lowest applicable NOAEL by worst-case estimates of chronic exposure. Acute risks were assessed by comparison of oral LD50 values to estimated maximum acute human exposure. It was concluded that, under present and expected conditions of use, Roundup herbicide does not pose a health risk to humans.

Hernandez et al, 2013

Hernandez, A. F., Parron, T., Tsatsakis, A. M., Requena, M., Alarcon, R., & Lopez-Guarnido, O.; “Toxic effects of pesticide mixtures at a molecular level: their relevance to human health;” Toxicology, 2013, 307, 136-145; DOI: 10.1016/j.tox.2012.06.009.


Pesticides almost always occur in mixtures with other ones. The toxicological effects of low-dose pesticide mixtures on the human health are largely unknown, although there are growing concerns about their safety. The combined toxicological effects of two or more components of a pesticide mixture can take one of three forms: independent, dose addition or interaction. Not all mixtures of pesticides with similar chemical structures produce additive effects; thus, if they act on multiple sites their mixtures may produce different toxic effects. The additive approach also fails when evaluating mixtures that involve a secondary chemical that changes the toxicokinetics of the pesticide as a result of its increased activation or decreased detoxification, which is followed by an enhanced or reduced toxicity, respectively. This review addresses a number of toxicological interactions of pesticide mixtures at a molecular level. Examples of such interactions include the postulated mechanisms for the potentiation of pyrethroid, carbaryl and triazine herbicides toxicity by organophosphates; how the toxicity of some organophosphates can be potentiated by other organophosphates or by previous exposure to organochlorines; the synergism between pyrethroid and carbamate compounds and the antagonism between triazine herbicides and prochloraz. Particular interactions are also addressed, such as those of pesticides acting as endocrine disruptors, the cumulative toxicity of organophosphates and organochlorines resulting in estrogenic effects and the promotion of organophosphate-induced delayed polyneuropathy. FULL TEXT

Backhaus and Faust, 2012

Backhaus, T., & Faust, M.; “Predictive environmental risk assessment of chemical mixtures: a conceptual framework;” Environmental Science & Technology, 2012, 46(5), 2564-2573; DOI: 10.1021/es2034125.


Environmental risks of chemicals are still often assessed substance-by-substance, neglecting mixture effects. This may result in risk underestimations, as the typical exposure is toward multicomponent chemical “cocktails”. We use the two well established mixture toxicity concepts (Concentration Addition (CA) and Independent Action (IA)) for providing a tiered outline for environmental hazard and risk assessments of mixtures, focusing on general industrial chemicals and assuming that the “base set” of data (EC50s for algae, crustaceans, fish) is available. As mixture toxicities higher than predicted by CA are rare findings, we suggest applying CA as a precautious first tier, irrespective of the modes/mechanisms of action of the mixture components. In particular, we prove that summing up PEC/PNEC ratios might serve as a justifiable CA-approximation, in order to estimate in a first tier assessment whether there is a potential risk for an exposed ecosystem if only base-set data are available. This makes optimum use of existing single substance assessments as more demanding mixture investigations are requested only if there are first indications of an environmental risk. Finally we suggest to call for mode-of-action driven analyses only if error estimations indicate the possibility for substantial differences between CA- and IA-based assessments. FULL TEXT

Boobis et al., 2008

Boobis, A. R., Ossendorp, B. C., Banasiak, U., Hamey, P. Y., Sebestyen, I., & Moretto, A.; “Cumulative risk assessment of pesticide residues in food;” Toxicology Letters, 2008, 180(2), 137-150; DOI: 10.1016/j.toxlet.2008.06.004.


There is increasing need to address the potential risks of combined exposures to multiple residues from pesticides in the diet. The available evidence suggests that the main concern is from dose addition of those compounds that act by the same mode of action. The possibility of synergy needs to be addressed on a case-by-case basis, where there is a biologically plausible hypothesis that it may occur at the levels of residues occurring in the diet. Cumulative risk assessment is a resource-intense activity and hence a tiered approach to both toxicological evaluation and intake estimation is recommended, and the European Food Safety Authority (EFSA) has recently published such a proposal. Where assessments have already been undertaken by some other authority, full advantage should be taken of these, subject of course to considerations of quality and relevance. Inclusion of compounds in a cumulative assessment group (CAG) should be based on defined criteria, which allow for refinement in a tiered approach. These criteria should include chemical structure, mechanism of pesticidal action, target organ and toxic mode of action. A number of methods are available for cumulating toxicity. These are all inter-related, but some are mathematically more complex than others. The most useful methods, in increasing levels of complexity and refinement, are the hazard index, the reference point index, the Relative Potency Factor method and physiologically based toxicokinetic modelling, although this last method would only be considered should a highly refined assessment be necessary. Four possible exposure scenarios are of relevance for cumulative risk assessment, acute and chronic exposure in the context of maximum residue level (MRL)-setting, and in relation to exposures from the actual use patterns, respectively. Each can be addressed either deterministically or probabilistically. Strategies for dealing with residues below the limit of detection, limit of quantification or limit of reporting need to be agreed. A number of probabilistic models are available, but some of there are geographically constrained due to the underlying datasets used in their construction. Guidance on probabilistic modelling needs to be finalised. Cumulative risk assessments have been performed in a number of countries, on organophosphate insecticides alone (USA) or together with carbamates (UK, DK, NL), triazines, chloroacetanilides, carbamates alone (USA), and all pesticides (DE). All identifiable assumptions and uncertainties should be tabulated and evaluated, at least qualitatively. Those likely to have a major impact on the outcome of the assessment should be examined quantitatively. In cumulative risk assessment, it is necessary, as in other risk assessments, for risk managers to consider what level of risk would be considered “acceptable”, for example what percentile of the population should be below the reference value. Criteria for prioritising CAGs for cumulative risk assessment include frequency of detection in monitoring programmes, high usage, high exposure relative to the reference value, large number of compounds (e.g. five or more) in a group. FULL TEXT

Lajmanovich et al., 2019

Lajmanovich, R. C., Peltzer, P. M., Attademo, A. M., Martinuzzi, C. S., Simoniello, M. F., Colussi, C. L., Cuzziol Boccioni, A. P., & Sigrist, M.; “First evaluation of novel potential synergistic effects of glyphosate and arsenic mixture on Rhinella arenarum (Anura: Bufonidae) tadpoles;” Heliyon, 2019, 5(10), e02601; DOI: 10.1016/j.heliyon.2019.e02601.


The toxicity of glyphosate-based herbicide (GBH) and arsenite (As(III)) as individual toxicants and in mixture (50:50 v/v, GBH-As(III)) was determined in Rhinella arenarum tadpoles during acute (48 h) and chronic assays (22 days). In both types of assays, the levels of enzymatic activity [Acetylcholinesterase (AChE), Carboxylesterase (CbE), and Glutathione S-transferase (GST)] and the levels of thyroid hormones (triiodothyronine; T3 and thyroxine; T4) were examined. Additionally, the mitotic index (MI) of red blood cells (RBCs) and DNA damage index were calculated for the chronic assay. The results showed that the LC50 values at 48 h were 45.95 mg/L for GBH, 37.32 mg/L for As(III), and 30.31 mg/L for GBH-As(III) (with similar NOEC = 10 mg/L and LOEC = 20 mg/L between the three treatments). In the acute assay, Marking’s additive index (S = 2.72) indicated synergistic toxicity for GBH-As(III). In larvae treated with GBH and As(III) at the NOEC-48h (10 mg/L), AChE activity increased by 36.25% and 33.05% respectively, CbE activity increased by 22.25% and 39.05 % respectively, and GST activity increased by 46.75% with the individual treatment with GBH and by 131.65 % with the GBH-As(III) mixture. Larvae exposed to the GBH-As(III) mixture also showed increased levels of T4 (25.67 %). In the chronic assay at NOEC-48h/8 (1.25 mg/L), As(III) and GBH-As(III) inhibited AChE activity (by 39.46 % and 35.65%, respectively), but did not alter CbE activity. In addition, As(III) highly increased (93.7 %) GST activity. GBH-As(III) increased T3 (97.34%) and T4 (540.93%) levels. Finally, GBH-As(III) increased the MI of RBCs and DNA damage. This study demonstrated strong synergistic toxicity of the GBH-As(III) mixture, negatively altering antioxidant systems and thyroid hormone levels, with consequences on RBC proliferation and DNA damage in treated R. arenarum tadpoles. FULL TEXT

Simon-Delso et al., 2015

N. Simon-Delso,corresponding author V. Amaral-Rogers, L. P. Belzunces, J. M. Bonmatin, M. Chagnon, C. Downs, L. Furlan, D. W. Gibbons, C. Giorio, V. Girolami, D. Goulson, D. P. Kreutzweiser, C. H. Krupke, M. Liess, E. Long, M. McField, P. Mineau, E. A. D. Mitchell, C. A. Morrissey, D. A. Noome, L. Pisa, J. Settele, J. D. Stark, A. Tapparo, H. Van Dyck, J. Van Praagh, J. P. Van der Sluijs, P. R. Whitehorn, and M. Wiemers, “Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites,” Environmental Science and Pollution Research International, 2015; 22, DOI: 10.1007/s11356-014-3470-y


Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time—depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts. FULL TEXT

Brodeur et. al, 2016

Julie Celine Brodeur, Solene Malpel, Ana Belen Anglesio, Diego Cristos, María Florencia D’Andrea, María Belen Poliserpi, “Toxicities of glyphosate- and cypermethrin-based pesticides are antagonic in the tenspotted livebearer fish (Cnesterodon decemmaculatus),” Chemosphere, 2016, 155:429-435, DOI:  10.1016/j.chemosphere.2016.04.075.


Although pesticide contamination of surface waters normally occurs in the form of mixtures, the toxicity and interactions displayed by such mixtures have been little characterized until now. The present study examined the interactions prevailing in equitoxic and non-equitoxic binary mixtures of formulations of glyphosate (Glifoglex®) and cypermethrin (Glextrin®) to the tenspotted livebearer (Cnesterodon decemmaculatus), a widely distributed South American fish. The following 96 h-LC50s were obtained when pesticide formulations were tested individually: Glifoglex® 41.4 and 53 mg ae glyphosate/L; Glextrin® 1.89 and 2.60 mg cypermethrin/L. Equitoxic and non-equitoxic mixtures were significantly antagonic in all combinations tested. The magnitude of the antagonism (factor by which toxicity differed from concentration addition) varied between 1.37 and 3.09 times in the different non-equitoxic mixtures tested. Antagonism was due to a strong inhibition of cypermethrin toxicity by the glyphosate formulation, the toxicity of the cypermethrin-based pesticide being almost completely overridden by the glyphosate formulation. Results obtained in the current study with fish are radically opposite to those previously observed in tadpoles where synergy was observed when Glifoglex® and Glextrin® were present in mixtures.  FULL TEXT

Brodeur et. al, 2014

Julie Céline Brodeur, María Belén Poliserpi, María Florencia D’Andrea, Marisol Sánchez, “Synergy between glyphosate- and cypermethrin-based pesticides during acute exposures in tadpoles of the common South American Toad Rhinella arenarum,” Chemosphere, 2014, 112:70-76, DOI: 10.1016/j.chemosphere.2014.02.065.


The herbicide glyphosate and the insecticide cypermethrin are key pesticides of modern management in soy and corn cultures. Although these pesticides are likely to co-occur in ephemeral ponds or aquatic systems supporting amphibian wildlife, the toxicological interactions prevailing in mixtures of these two pesticides have been little studied. The current study evaluated the toxicity of equitoxic and nonequitoxic binary mixtures of glyphosate- and cypermethrin-based pesticides to tadpoles of the common South American toad, Rhinella arenarum. Two different combinations of commercial products were tested: glyphosate Glifosato Atanor + cypermethrin Xiper and glyphosate Glifoglex + cypermethrin Glextrin. When tested individually, the formulations presented the following 96 h-LC50s: Glifosato Atanor 19.4 mg ae L1 and Glifoglex 72.8 mg ae L1 , Xiper 6.8 mg L1 and Glextrin 30.2 mg L1. Equitoxic and non-equitoxic mixtures were significantly synergic in both combinations of commercial products tested. The magnitude of the synergy (factor by which toxicity differed from concentration addition) was constant at around twofold for all tested proportions of the glyphosate Glifoglex + cypermethrin Glextrin mixture; whereas the magnitude of the synergy varied between 4 and 9 times in the glyphosate Glifosato Atanor + cypermethrin Xiper mixture. These results call for more research to be promptly undertaken in order to understand the mechanisms behind the synergy observed and to identify and quantify the extent of its environmental impacts.  FULL TEXT

Jayasumana et al., 2015a

Channa Jayasumana, Sarath Gunatilake, and Sisira Siribaddana, “Simultaneous exposure to multiple heavy metals and glyphosate may contribute to Sri Lankan agricultural nephropathy,” BMC Nephrology, 2015, 16:103, DOI 10.1186/s12882-015-0109-2.


BACKGROUND: Sri Lankan Agricultural Nephropathy (SAN), a new form of chronic kidney disease among paddy farmers was first reported in 1994. It has now become the most debilitating public health issue in the dry zone of Sri Lanka. Previous studies showed SAN is a tubulo-interstitial type nephropathy and exposure to arsenic and cadmium may play a role in pathogenesis of the disease.

METHODS: Urine samples of patients with SAN (N = 10) from Padavi-Sripura, a disease endemic area, and from two sets of controls, one from healthy participants (N = 10) from the same endemic area and the other from a non-endemic area (N = 10; Colombo district) were analyzed for 19 heavy metals and for the presence of the pesticide- glyphosate.

RESULTS: In both cases and the controls who live in the endemic region, median concentrations of urinary Sb, As, Cd, Co, Pb, Mn, Ni, Ti and V exceed the reference range. With the exception of Mo in patients and Al, Cu, Mo, Se, Ti and Zn in endemic controls, creatinine adjusted values of urinary heavy metals and glyphosate were significantly higher when compared to non-endemic controls. Creatinine unadjusted values were significant higher for 14 of the 20 chemicals studied in endemic controls and 7 in patients, compared to non-endemic controls. The highest urinary glyphosate concentration was recorded in SAN patients (range 61.0-195.1 μg/g creatinine).

CONCLUSTIONS: People in disease endemic area exposed to multiple heavy metals and glyphosate. Results are supportive of toxicological origin of SAN that is confined to specific geographical areas. Although we could not localize a single nephrotoxin as the culprit for SAN, multiple heavy metals and glyphosates may play a role in the pathogenesis. Heavy metals excessively present in the urine samples of patients with SAN are capable of causing damage to kidneys. Synergistic effects of multiple heavy metals and agrochemicals may be nephrotoxic.  FULL TEXT

Back To Top