skip to Main Content

Bibliography Tag: environmental impacts

Smith et al., 2020

Smith, Dylan B., Arce, Andres N., Ramos Rodrigues, Ana, Bischoff, Philipp H., Burris, Daisy, Ahmed, Farah, & Gill, Richard J.; “Insecticide exposure during brood or early-adult development reduces brain growth and impairs adult learning in bumblebees;” Proceedings of the Royal Society B: Biological Sciences, 2020, 287(1922); DOI: 10.1098/rspb.2019.2442.

ABSTRACT:

For social bees, an understudied step in evaluating pesticide risk is how contaminated food entering colonies affects residing offspring development and maturation. For instance, neurotoxic insecticide compounds in food could affect central nervous system development predisposing individuals to become poorer task performers later-in-life. Studying bumblebee colonies provisioned with neonicotinoid spiked nectar substitute, we measured brain volume and learning behaviour of 3 or 12-day old adults that had experienced in-hive exposure during brood and/or early-stage adult development. Micro-computed tomography scanning and segmentation of multiple brain neuropils showed exposure during either of the developmental stages caused reduced mushroom body calycal growth relative to unexposed workers. Associated with this was a lower probability of responding to a sucrose reward and lower learning performance in an olfactory conditioning test. While calycal volume of control workers positively correlated with learning score, this relationship was absent for exposed workers indicating neuropil functional impairment. Comparison of 3- and 12-day adults exposed during brood development showed a similar degree of reduced calycal volume and impaired behaviour highlighting lasting and irrecoverable effects from exposure despite no adult exposure. Our findings help explain how the onset of pesticide exposure to whole colonies can lead to lag-effects on growth and resultant dysfunction. FULL TEXT

Sviridov et al., 2015

Sviridov, A. V., Shushkova, T. V., Ermakova, I. T., Ivanova, E. V., Epiktetov, D. O., & Leont’evskii, A. A.; “[Microbial degradation of glyphosate herbicides (review)];” Prikl Biokhim Mikrobiol, 2015, 51(2), 183-190; DOI: 10.7868/s0555109915020221.

ABSTRACT:

This review analyzes the issues associated with biodegradation of glyphosate (N-(phosphonomethyl)glycine), one of the most widespread herbicides. Glyphosate can accumulate in natural environments and can be toxic not only for plants but also for animals and bacteria. Microbial transformation and mineralization of glyphosate, as the only means of its rapid degradation, are discussed in detail. The different pathways of glyphosate catabolism employed by the known destructing bacteria representing different taxonomic groups are described. The potential existence of alternative glyphosate degradation pathways, apart from those mediated by C-P lyase and glyphosate oxidoreductase, is considered. Since the problem of purifying glyphosate-contaminated soils and water bodies is a topical issue, the possibilities of applying glyphosate-degrading bacteria for their bioremediation are discussed. FULL TEXT

Wang et al., 2020

Wang, G. H., Berdy, B. M., Velasquez, O., Jovanovic, N., Alkhalifa, S., Minbiole, K. P. C., & Brucker, R. M.; “Changes in Microbiome Confer Multigenerational Host Resistance after Sub-toxic Pesticide Exposure;” Cell Host & Microbe, 2020; DOI: 10.1016/j.chom.2020.01.009.

ABSTRACT:

The gut is a first point of contact with ingested xenobiotics, where chemicals are metabolized directly by the host or microbiota. Atrazine is a widely used pesticide, but the role of the microbiome metabolism of this xenobiotic and the impact on host responses is unclear. We exposed successive generations of the wasp Nasonia vitripennis to subtoxic levels of atrazine and observed changes in the structure and function of the gut microbiome that conveyed atrazine resistance. This microbiome-mediated resistance was maternally inherited and increased over successive generations, while also heightening the rate of host genome selection. The rare gut bacteria Serratia marcescens and Pseudomonas protegens contributed to atrazine metabolism. Both of these bacteria contain genes that are linked to atrazine degradation and were sufficient to confer resistance in experimental wasp populations. Thus, pesticide exposure causes functional, inherited changes in the microbiome that should be considered when assessing xenobiotic exposure and as potential countermeasures to toxicity. FULL TEXT

Janssens and Stoks, 2017

Janssens, L., & Stoks, R.; “Stronger effects of Roundup than its active ingredient glyphosate in damselfly larvae;” Aquatic Toxicology, 2017, 193, 210-216; DOI: 10.1016/j.aquatox.2017.10.028.

ABSTRACT:

Pesticides are causing strong decreases in aquatic biodiversity at concentrations assumed safe by legislation. One reason for the failing risk assessment may be strong differences in the toxicity of the active ingredient of pesticides and their commercial formulations. Sublethal effects, especially those on behaviour, have been largely ignored in this context, yet can be equally important as lethal effects at the population and ecosystem levels. Here, we compared the toxicity of the herbicide Roundup and its active ingredient glyphosate on survival, but also on ecologically relevant sublethal traits (life history, behaviour and physiology) in damselfly larvae. Roundup was more toxic than glyphosate with negative effects on survival, behaviour and most of the physiological traits being present at lower concentrations (food intake, escape swimming speed) or even only present (survival, sugar and total energy content and muscle mass) following Roundup exposure. This confirms the toxicity of the surfactant POEA. Notably, also glyphosate was not harmless: a realistic concentration of 2mg/l resulted in reduced growth rate, escape swimming speed and fat content. Our results therefore indicate that the toxicity of Roundup cannot be fully attributed to its surfactant, thereby suggesting that also the new generation of glyphosate-based herbicides with other mixtures of surfactants likely will have adverse effects on non-target aquatic organisms. Ecotoxicological studies comparing the toxicity of active ingredients and their commercial formulations typically ignore behaviour while the here observed differential effects on behaviour likely will negatively impact damselfly populations. Our data highlight that risk assessment of pesticides ignoring sublethal effects may contribute to the negative effects of pesticides on aquatic biodiversity. FULL TEXT

Van Stempvoort et al., 2014

Van Stempvoort, D. R., Roy, J. W., Brown, S. J., & Bickerton, G.; “Residues of the herbicide glyphosate in riparian groundwater in urban catchments;” Chemosphere, 2014, 95, 455-463; DOI: 10.1016/j.chemosphere.2013.09.095.

ABSTRACT:

The herbicide glyphosate and its putative metabolite aminomethylphosphonic acid (AMPA) have been found in urban streams, but limited information is available on their presence in urban riparian groundwater. Information is also lacking regarding the source of AMPA in these urban settings (glyphosate metabolite or wastewater), and whether, if present, glyphosate residues in urban riparian groundwater contribute significantly to urban streams. Glyphosate and AMPA were detected in shallow riparian groundwater at 4 of 5 stream sites in urban catchments in Canada and each were found in approximately 1 in 10 of the samples overall. Frequency of observations of glyphosate and AMPA varied substantially between sites, from no observations in a National Park near the Town of Jasper Alberta, to observations of both glyphosate and AMPA in more than half of the samples along two short reaches of streams in Burlington, Ontario. In these two catchments, AMPA was correlated with glyphosate, rather than the artificial sweetener acesulfame, suggesting that the AMPA is derived mainly from glyphosate degradation rather than from wastewater sources. Land use, localized dosage history, depth below ground and other factors likely control the occurrence of detectable glyphosate residues in groundwater. FULL TEXT

Aparicio et al., 2018

Aparicio, Virginia C., Aimar, Silvia, De Gerónimo, Eduardo, Mendez, Mariano J., & Costa, José L.; “Glyphosate and AMPA concentrations in wind-blown material under field conditions;” Land Degradation & Development, 2018, 29(5), 1317-1326; DOI: 10.1002/ldr.2920.

ABSTRACT:

Agricultural intensification in fragile arid and semiarid environments has led to an increase in soil degradation, mainly through wind erosion. Argentina is an agricultural and cattle‐farming country, which has increased its productivity in the last few decades, widening the boundaries of farm land and the use of herbicides to control weeds. Glyphosate, which accounts for 65% of the Argentinian pesticides market, is strongly retained in soil. The World Health Organization concluded that there was evidence to classify glyphosate as ‘probably carcinogenic to humans.’ In this context, the objective of this study was to determine the presence and concentration of glyphosate and aminomethylphosphonic acid (AMPA) in wind‐blown material in 3 areas in Argentine semiarid regions (Chaco, La Pampa, and San Luis). In 1‐ha2 plots, left uncovered and levelled, the wind‐blown material was collected at heights of 13.5, 50, and 150 cm during 18 erosion events. The wind‐blown material carried by the wind at a height of 150 cm had concentrations of 247 and 218 μgkg−1 of glyphosate and AMPA, respectively. This material was enriched 60 times in glyphosate and 3 times in AMPA as compared with the original soil. This shows that the eroded material can, potentially, have a negative impact on the ecosystem and also on human health, depending on the proportion of this material released into the atmosphere in suspension as particulate matter. This study is, to our knowledge, the first to report concentrations of glyphosate and AMPA in wind‐blown material under field conditions. FULL TEXT

Topping et al., 2020

Topping, C. J., Aldrich, A., & Berny, P.; “Overhaul environmental risk assessment for pesticides;” Science, 2020, 367(6476), 360-363; DOI: 10.1126/science.aay1144.

SUMMARY:

Environmental risk assessment (ERA) of pesticides does not account for many stressors that have intensified in recent years, such as climate change, habitat destruction, and increasing landscape homogeneity, the combination of which can aggravate effects of pesticides in nature. We describe how several assumptions underlying ERA may not hold in modern intensive agricultural landscapes, and the interaction among assumption violations may account for observed declines in biodiversity. Using European contexts to exemplify these global concerns, we review how regulatory ERA for pesticides has fallen out of step with scientific knowledge and societal demands for sustainable food production and suggest systematic and recently feasible changes for regulation.  FULL TEXT

Eng et al., 2019

Eng, M. L., Stutchbury, B. J. M., & Morrissey, C. A.; “A neonicotinoid insecticide reduces fueling and delays migration in songbirds;” Science, 2019, 365(6458), 1177-1180; DOI: 10.1126/science.aaw9419.

ABSTRACT:

Neonicotinoids are neurotoxic insecticides widely used as seed treatments, but little is known of their effects on migrating birds that forage in agricultural areas. We tracked the migratory movements of imidacloprid-exposed songbirds at a landscape scale using a combination of experimental dosing and automated radio telemetry. Ingestion of field-realistic quantities of imidacloprid (1.2 or 3.9 milligrams per kilogram body mass) by white-crowned sparrows (Zonotrichia leucophrys) during migratory stopover caused a rapid reduction in food consumption, mass, and fat and significantly affected their probability of departure. Birds in the high-dose treatment stayed a median of 3.5 days longer at the site of capture after exposure as compared with controls, likely to regain fuel stores or recover from intoxication. Migration delays can carry over to affect survival and reproduction; thus, these results confirm a link between sublethal pesticide exposure and adverse outcomes for migratory bird populations. FULL TEXT

DiBartolomeis et al., 2019

DiBartolomeis, M., Kegley, S., Mineau, P., Radford, R., & Klein, K.; “An assessment of acute insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in the United States;” Plos One, 2019, 14(8), e0220029; DOI: 10.1371/journal.pone.0220029.

ABSTRACT:

We present a method for calculating the Acute Insecticide Toxicity Loading (AITL) on US agricultural lands and surrounding areas and an assessment of the changes in AITL from 1992 through 2014. The AITL method accounts for the total mass of insecticides used in the US, acute toxicity to insects using honey bee contact and oral LD50 as reference values for arthropod toxicity, and the environmental persistence of the pesticides. This screening analysis shows that the types of synthetic insecticides applied to agricultural lands have fundamentally shifted over the last two decades from predominantly organophosphorus and N-methyl carbamate pesticides to a mix dominated by neonicotinoids and pyrethroids. The neonicotinoids are generally applied to US agricultural land at lower application rates per acre; however, they are considerably more toxic to insects and generally persist longer in the environment. We found a 48- and 4-fold increase in AITL from 1992 to 2014 for oral and contact toxicity, respectively. Neonicotinoids are primarily responsible for this increase, representing between 61 to nearly 99 percent of the total toxicity loading in 2014. The crops most responsible for the increase in AITL are corn and soybeans, with particularly large increases in relative soybean contributions to AITL between 2010 and 2014. Oral exposures are of potentially greater concern because of the relatively higher toxicity (low LD50s) and greater likelihood of exposure from residues in pollen, nectar, guttation water, and other environmental media. Using AITL to assess oral toxicity by class of pesticide, the neonicotinoids accounted for nearly 92 percent of total AITL from 1992 to 2014. Chlorpyrifos, the fifth most widely used insecticide during this time contributed just 1.4 percent of total AITL based on oral LD50s. Although we use some simplifying assumptions, our screening analysis demonstrates an increase in pesticide toxicity loading over the past 26 years, which potentially threatens the health of honey bees and other pollinators and may contribute to declines in beneficial insect populations as well as insectivorous birds and other insect consumers. FULL TEXT

Lajmanovich et al., 2019

Lajmanovich, R. C., Peltzer, P. M., Attademo, A. M., Martinuzzi, C. S., Simoniello, M. F., Colussi, C. L., Cuzziol Boccioni, A. P., & Sigrist, M.; “First evaluation of novel potential synergistic effects of glyphosate and arsenic mixture on Rhinella arenarum (Anura: Bufonidae) tadpoles;” Heliyon, 2019, 5(10), e02601; DOI: 10.1016/j.heliyon.2019.e02601.

ABSTRACT:

The toxicity of glyphosate-based herbicide (GBH) and arsenite (As(III)) as individual toxicants and in mixture (50:50 v/v, GBH-As(III)) was determined in Rhinella arenarum tadpoles during acute (48 h) and chronic assays (22 days). In both types of assays, the levels of enzymatic activity [Acetylcholinesterase (AChE), Carboxylesterase (CbE), and Glutathione S-transferase (GST)] and the levels of thyroid hormones (triiodothyronine; T3 and thyroxine; T4) were examined. Additionally, the mitotic index (MI) of red blood cells (RBCs) and DNA damage index were calculated for the chronic assay. The results showed that the LC50 values at 48 h were 45.95 mg/L for GBH, 37.32 mg/L for As(III), and 30.31 mg/L for GBH-As(III) (with similar NOEC = 10 mg/L and LOEC = 20 mg/L between the three treatments). In the acute assay, Marking’s additive index (S = 2.72) indicated synergistic toxicity for GBH-As(III). In larvae treated with GBH and As(III) at the NOEC-48h (10 mg/L), AChE activity increased by 36.25% and 33.05% respectively, CbE activity increased by 22.25% and 39.05 % respectively, and GST activity increased by 46.75% with the individual treatment with GBH and by 131.65 % with the GBH-As(III) mixture. Larvae exposed to the GBH-As(III) mixture also showed increased levels of T4 (25.67 %). In the chronic assay at NOEC-48h/8 (1.25 mg/L), As(III) and GBH-As(III) inhibited AChE activity (by 39.46 % and 35.65%, respectively), but did not alter CbE activity. In addition, As(III) highly increased (93.7 %) GST activity. GBH-As(III) increased T3 (97.34%) and T4 (540.93%) levels. Finally, GBH-As(III) increased the MI of RBCs and DNA damage. This study demonstrated strong synergistic toxicity of the GBH-As(III) mixture, negatively altering antioxidant systems and thyroid hormone levels, with consequences on RBC proliferation and DNA damage in treated R. arenarum tadpoles. FULL TEXT

Back To Top