skip to Main Content

Bibliography Tag: full text available

Soloneski et al., 2016

Sonia Soloneski, Celeste Ruiz de Arcaute, and Marcelo L. Larramendy, “Genotoxic effect of a binary mixture of dicamba and glyphosate-based commercial herbicide formulations on Rhinella arenarum (Hensel, 1867) (Anura, Bufonidae) late-stage larvae,” Environmental Science and Pollution Research, 2016, 23:17, DOI: 10.1007/S11356-016-6992-7.

ABSTRACT:

The acute toxicity of two herbicide formulations, namely, the 57.71 % dicamba (DIC)-based Banvel(®) and the 48 % glyphosate (GLY)-based Credit(®), alone as well as the binary mixture of these herbicides was evaluated on late-stage Rhinella arenarum larvae (stage 36) exposed under laboratory conditions. Mortality was used as an endpoint for determining acute lethal effects, whereas the single-cell gel electrophoresis (SCGE) assay was employed as genotoxic endpoint to study sublethal effects. Lethality studies revealed LC5096 h values of 358.44 and 78.18 mg L(-1) DIC and GLY for Banvel(®) and Credit(®), respectively. SCGE assay revealed, after exposure for 96 h to either 5 and 10 % of the Banvel(®) LC5096 h concentration or 5 and 10 % of the Credit(®) LC5096 h concentration, an equal significant increase of the genetic damage index (GDI) regardless of the concentration of the herbicide assayed. The binary mixtures of 5 % Banvel(®) plus 5 % Credit(®) LC5096 h concentrations and 10 % Banvel(®) plus 10 % Credit(®) LC5096 h concentrations induced equivalent significant increases in the GDI in regard to GDI values from late-stage larvae exposed only to Banvel(®) or Credit(®). This study represents the first experimental evidence of acute lethal and sublethal effects exerted by DIC on the species, as well as the induction of primary DNA breaks by this herbicide in amphibians. Finally, a synergistic effect of the mixture of GLY and DIC on the induction of primary DNA breaks on circulating blood cells of R. arenarum late-stage larvae could be demonstrated.  FULL TEXT

Szekacs and Darvas, 2012

András Székács and Béla Darvas, “Forty Years with Glyphosate,” 2010, in Herbicides- Properties, Synthesis, and Control of Weeds, edited by Mohammed Naguib Abd El-Ghany Hasaneen.

ABSTRACT:

Not Available

FULL TEXT

 

Dill et al., 2010

Gerald M. Dill, R. Douglas Sammons, Paul C. C.  Feng, Frank Kohn, Keith Kretzmer, Akbar Mehrsheikh, Marion Bleeke, Joy L. Honegger, Donna Farmer, Dan Wright, and Eric A. Haupfear, “Glyphosate: Discovery, Development, Applications, and Properties,” 2010, in Glyphosate Resistance in Crops and Weeds: History, Development, and Management, Edited by Vijay K. Nandula.

ABSTRACT:

Not Avaialble

FULL TEXT

Reigart and Roberts, 2013

Reigart, Routt, Roberts, James,  “Recognition and Management of Pesticide Poisoning,” US EPA Office of Pesticide Programs, 2013, Sixth Edition.

ABSTRACT:

Not Available

FULL TEXT

Wagner-Schuman et al., 2015

Wagner-Schuman M, Richardson JR, Auinger P, Braun JM, Lanphear BP, Epstein JN, Yolton K, Froehlich TE., “Association of pyrethroid pesticide exposure with attention-deficit/hyperactivity disorder in a nationally representative sample of U.S. children,” Environmental Health,  2015, 14:44.

ABSTRACT:

BACKGROUND: Pyrethroid pesticides cause abnormalities in the dopamine system and produce an ADHD phenotype in animal models, with effects accentuated in males versus females. However, data regarding behavioral effects of pyrethroid exposure in children is limited. We examined the association between pyrethroid pesticide exposure and ADHD in a nationally representative sample of US children, and tested whether this association differs by sex.

METHODS: Data are from 8-15 year old participants (N = 687) in the 2001-2002 National Health and Nutrition Examination Survey. Exposure was assessed using concurrent urinary levels of the pyrethroid metabolite 3-phenoxybenzoic acid (3-PBA). ADHD was defined by either meeting Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition criteria on the Diagnostic Interview Schedule for Children (DISC) or caregiver report of a prior diagnosis. ADHD symptom counts were determined via the DISC. Multivariable logistic regression examined the link between pyrethroid exposure and ADHD, and poisson regression investigated the link between exposure and ADHD symptom counts.

RESULTS: Children with urinary 3-PBA above the limit of detection (LOD) were twice as likely to have ADHD compared with those below the LOD (adjusted odds ratio [aOR] 2.42; 95 % confidence interval [CI] 1.06, 5.57). Hyperactive-impulsive symptoms increased by 50 % for every 10-fold increase in 3-PBA levels (adjusted count ratio 1.50; 95 % CI 1.03, 2.19); effects on inattention were not significant. We observed possible sex-specific effects: pyrethroid biomarkers were associated with increased odds of an ADHD diagnosis and number of ADHD symptoms for boys but not girls.

CONCLUSIONS: We found an association between increasing pyrethroid pesticide exposure and ADHD which may be stronger for hyperactive-impulsive symptoms compared to inattention and in boys compared to girls. Given the growing use of pyrethroid pesticides, these results may be of considerable public health import. FULL TEXT

Lanphear, 2015

Lanphear, Bruce, “The Impact of Toxins on the Developing Brain,” Annual Review of Public Health, 2015, 36:1, DOI: 10.1146/ANNUREV-PUBLHEALTH-031912-114413.

ABSTRACT:

The impact of toxins on the developing brain is usually subtle for an individual child, but the damage can be substantial at the population level. Numerous challenges must be addressed to definitively test the impact of toxins on brain development in children: We must quantify exposure using a biologic marker or pollutant; account for an ever-expanding set of potential confounders; identify critical windows of vulnerability; and repeatedly examine the association of biologic markers of toxins with intellectual abilities, behaviors, and brain function in distinct cohorts. Despite these challenges, numerous toxins have been implicated in the development of intellectual deficits and mental disorders in children. Yet, too little has been done to protect children from these ubiquitous but insidious toxins. The objective of this review is to provide an overview on the population impact of toxins on the developing brain and describe implications for public health.  FULL TEXT

Laborde et al., 2015

Laborde A, Tomasina F, Bianchi F, Bruné MN, Buka I, Comba P, Corra L, Cori L, Duffert CM, Harari R, Iavarone I, McDiarmid MA, Gray KA, Sly PD, Soares A, Suk WA, Landrigan PJ, “Children’s Health in Latin America: The Influence of Environmental Exposures,” Environmental Health Perspectives,  2015 Mar; 123(3), DOI: 10.1289/EHP.1408292.

ABSTRACT:

BACKGROUND: Chronic diseases are increasing among children in Latin America.

OBJECTIVE AND METHODS: To examine environmental risk factors for chronic disease in Latin American children and to develop a strategic initiative for control of these exposures, the World Health Organization (WHO) including the Pan American Health Organization (PAHO), the Collegium Ramazzini, and Latin American scientists reviewed regional and relevant global data.

RESULTS: Industrial development and urbanization are proceeding rapidly in Latin America, and environmental pollution has become widespread. Environmental threats to children’s health include traditional hazards such as indoor air pollution and drinking-water contamination; the newer hazards of urban air pollution; toxic chemicals such as lead, asbestos, mercury, arsenic, and pesticides; hazardous and electronic waste; and climate change. The mix of traditional and modern hazards varies greatly across and within countries reflecting industrialization, urbanization, and socioeconomic forces.

CONCLUSIONS: To control environmental threats to children’s health in Latin America, WHO, including PAHO, will focus on the most highly prevalent and serious hazards—indoor and outdoor air pollution, water pollution, and toxic chemicals. Strategies for controlling these hazards include developing tracking data on regional trends in children’s environmental health (CEH), building a network of Collaborating Centres, promoting biomedical research in CEH, building regional capacity, supporting development of evidence-based prevention policies, studying the economic costs of chronic diseases in children, and developing platforms for dialogue with relevant stakeholders.  FULL TEXT

 

Jackson et al., 2009

Jackson RJ, Minjares R, Naumoff KS, Patel BS, Martin LK, “Agriculture Policy is Health Policy,” Journal of Hunger and Environmental Nutrition,  2009; 4(3): 393-408, DOI: 10.1080/19320240903321367.

ABSTRACT:

The Farm Bill is meant to supplement and secure farm incomes, ensure a stable food supply, and support the American farm economy. Over time, however, it has evolved into a system that creates substantial health impacts, both directly and indirectly. By generating more profit for food producers and less for family farmers; by effectively subsidizing the production of lower-cost fats, sugars, and oils that intensify the health-destroying obesity epidemic; by amplifying environmentally destructive agricultural practices that impact air, water, and other resources, the Farm Bill influences the health of Americans more than is immediately apparent. In this article, we outline three major public health issues influenced by American farm policy. These are (1) rising obesity; (2) food safety; and (3) environmental health impacts, especially exposure to toxic substances and pesticides.   FULL TEXT

Sisto et al., 2015

Renata Sisto, Arturo Moleti, L’ubica Palkovičová Murínová, Soňa Wimmerová, Kinga Lancz, Juraj Tihányi, Kamil Čonka, Eva Šovčíková, Irva Hertz-Picciotto, Todd A. Jusko, and Tomáš Trnovec, “Environmental exposure to organochlorine pesticides and deficits in cochlear status in children,” Environmental Science and Pollution Research, 2015, 22:19, DOI: 10.107/S11356-015-489-5.

ABSTRACT:

The aim of this study was to examine the hypothesis that organochlorine pesticides (OCPs), hexachlorobenzene (HCB), β-hexachlorocyclohexane (β-HCH), 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p′-DDT) and its metabolite 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (p,p′-DDE) are ototoxic to humans. A Multivariate General Linear Model was designed, in which the statistical relation between blood serum concentrations of HCB, β-HCH, p,p′-DDT or p,p′-DDE at the different ages (at birth, 6, 16 and 45 months) and the DPOAEs were treated as multivariate outcome variables. PCB congeners and OCPs were strongly correlated in serum of children from our cohort. To ascertain that the association between DPOAEs at a given frequency and concentration of a pesticide is not influenced by PCBs or other OCP also present in serum, we calculated BMCs relating DPOAEs to a serum pesticides alone and in presence of confounding PCB-153 or other OCPs. We found that BMCs relating DPOAEs to serum pesticides are not affected by confounders. DPOAE amplitudes were associated with serum OCPs at all investigated time intervals, however in a positive way with prenatal exposure and in a negative way with all postnatal exposures. We observed tonotopicity in the association of pesticides with amplitude of DPOAEs as its strength was frequency dependent. We conclude that exposure to OCPs in infancy at environmental concentrations may be associated with hearing deficits.  FULL TEXT

Back To Top