Bibliography Tag: herbicides

Bohnenblust et al., 2016

Bohnenblust, E. W., Vaudo, A. D., Egan, J. F., Mortensen, D. A., & Tooker, J. F.; “Effects of the herbicide dicamba on nontarget plants and pollinator visitation;” Environmental Toxicology and Chemistry, 2016, 35(1), 144-151; DOI: 10.1002/etc.3169.


Nearly 80% of all pesticides applied to row crops are herbicides, and these applications pose potentially significant ecotoxicological risks to nontarget plants and associated pollinators. In response to the widespread occurrence of weed species resistant to glyphosate, biotechnology companies have developed crops resistant to the synthetic-auxin herbicides dicamba and 2,4-dichlorophenoxyacetic acid (2,4-D); and once commercialized, adoption of these crops is likely to change herbicide-use patterns. Despite current limited use, dicamba and 2,4-D are often responsible for injury to nontarget plants; but effects of these herbicides on insect communities are poorly understood. To understand the influence of dicamba on pollinators, the authors applied several sublethal, drift-level rates of dicamba to alfalfa (Medicago sativa L.) and Eupatorium perfoliatum L. and evaluated plant flowering and floral visitation by pollinators. The authors found that dicamba doses simulating particle drift (≈1% of the field application rate) delayed onset of flowering and reduced the number of flowers of each plant species; however, plants that did flower produced similar-quality pollen in terms of protein concentrations. Further, plants affected by particle drift rates were visited less often by pollinators. Because plants exposed to sublethal levels of dicamba may produce fewer floral resources and be less frequently visited by pollinators, use of dicamba or other synthetic-auxin herbicides with widespread planting of herbicide-resistant crops will need to be carefully stewarded to prevent potential disturbances of plant and beneficial insect communities in agricultural landscapes. FULL TEXT

Oseland et al., 2020

Oseland, E., Bish, M., Steckel, L., & Bradley, K.; “Identification of environmental factors that influence the likelihood of off-target movement of dicamba;” Pest Management Science, 2020, 76(9), 3282-3291; DOI: 10.1002/ps.5887.


BACKGROUND: Commercialization of dicamba-resistant soybean and cotton and subsequent post-emergence applications of dicamba contributed to at least 1.4 and 0.5 million hectares of dicamba-injured soybean in the United States in 2017 and 2018, respectively. This research was initiated to identify environmental factors that contribute to off-target dicamba movement. A survey was conducted following the 2017 growing season to collect information from dicamba applications that remained on the target field and those where dicamba moved. Weather and environmental data surrounding applications were collected and used to identify factors that reduce the likelihood of off-target movement. Soil pH was one factor identified in the model, and field experiments were conducted in 2018 and 2019 to validate the model. Three commercially-available dicamba formulations and one formulation currently in development were applied to soil at five distinct pH values. Sensitive soybean was used as a bioassay plant to detect dicamba volatilization.

RESULTS: Wind speeds the day of and following application, nearest water source to the field, soybean production acreage in the county, and soil pH were identified as factors that influence the likelihood for off-target movement. In the field study, when dicamba was applied to pH-adjusted soil and placed under low tunnels for 72 h, dicamba volatility increased when soil pH decreased as the model predicted. Dicamba choline, which is not commercially available, had reduced volatility compared to other formulations tested.

CONCLUSION: Results of this study identified specific factors that contribute to successful and unsuccessful dicamba applications and should be considered prior to applications.

Qi et al., 2020

Qi, M., Huo, J., Li, Z., He, C., Li, D., Wang, Y., Vasylieva, N., Zhang, J., & Hammock, B. D.; “On-spot quantitative analysis of dicamba in field waters using a lateral flow immunochromatographic strip with smartphone imaging;” Analytical and Bioanalytical Chemistry, 2020, 412(25), 6995-7006; DOI: 10.1007/s00216-020-02833-z.


Dicamba herbicide is increasingly used in the world, in particular’ with the widespread cultivation of genetically modified dicamba-resistant crops. However, the drift problem in the field has caused phytotoxicity against naive, sensitive crops, raising legal concerns. Thus, it is particularly timely to develop a method that can be used for on-the-spot rapid detection of dicamba in the field. In this paper, a lateral flow immunochromatographic strip (LFIC) was developed. The quantitative detection can be conducted by an app on a smartphone, named “Color Snap.” The tool reported here provides results in 10 min and can detect dicamba in water with a LOD (detection limit) value of 0.1 mg/L. The developed LFIC shows excellent stability and sensitivity appropriate for field analysis. Our sensor is portable and excellent tool for on-site detection with smartphone imaging for better accuracy and precision of the results.

Riter et al., 2020

Riter, L. S., Sall, E. D., Pai, N., Beachum, C. E., & Orr, T. B.; “Quantifying Dicamba Volatility under Field Conditions: Part I, Methodology;” Journal of Agricultural and Food Chemistry, 2020, 68(8), 2277-2285; DOI: 10.1021/acs.jafc.9b06451.


Quantitative assessment of the volatility of field applied herbicides requires orchestrated sampling logistics, robust analytical methods, and sophisticated modeling techniques. This manuscript describes a comprehensive system developed to measure dicamba volatility in an agricultural setting. Details about study design, sample collection, analytical chemistry, and flux modeling are described. A key component of the system is the interlaboratory validation of an analytical method for trace level detection (limit of quantitation of 1.0 ng/PUF) of dicamba in polyurethane foam (PUF) air samplers. Validation of field sampling and flux methodologies was conducted in a field trial that demonstrated agreement between predicted and directly measured dicamba air concentrations at a series of off-target locations. This validated system was applied to a field case study on two plots to demonstrate the utility of these methods under typical agricultural conditions. This case study resulted in a time-varying volatile flux profile, which showed that less than 0.2 +/- 0.05% of the applied dicamba was volatilized over the 3-day sampling period. FULL TEXT