Bibliography Tag: male reproductive impacts

Levine et al., 2017

Levine, H., Jorgensen, N., Martino-Andrade, A., Mendiola, J., Weksler-Derri, D., Mindlis, I., Pinotti, R., & Swan, S. H.; “Temporal trends in sperm count: a systematic review and meta-regression analysis;” Human Reproduction Update, 2017, 23(6), 646-659; DOI: 10.1093/humupd/dmx022.


BACKGROUND: Reported declines in sperm counts remain controversial today and recent trends are unknown. A definitive meta-analysis is critical given the predictive value of sperm count for fertility, morbidity and mortality.

OBJECTIVE AND RATIONALE: To provide a systematic review and meta-regression analysis of recent trends in sperm counts as measured by sperm concentration (SC) and total sperm count (TSC), and their modification by fertility and geographic group.

SEARCH METHODS: PubMed/MEDLINE and EMBASE were searched for English language studies of human SC published in 1981-2013. Following a predefined protocol 7518 abstracts were screened and 2510 full articles reporting primary data on SC were reviewed. A total of 244 estimates of SC and TSC from 185 studies of 42 935 men who provided semen samples in 1973-2011 were extracted for meta-regression analysis, as well as information on years of sample collection and covariates [fertility group (‘Unselected by fertility’ versus ‘Fertile’), geographic group (‘Western’, including North America, Europe Australia and New Zealand versus ‘Other’, including South America, Asia and Africa), age, ejaculation abstinence time, semen collection method, method of measuring SC and semen volume, exclusion criteria and indicators of completeness of covariate data]. The slopes of SC and TSC were estimated as functions of sample collection year using both simple linear regression and weighted meta-regression models and the latter were adjusted for pre-determined covariates and modification by fertility and geographic group. Assumptions were examined using multiple sensitivity analyses and nonlinear models.

OUTCOMES: SC declined significantly between 1973 and 2011 (slope in unadjusted simple regression models -0.70 million/ml/year; 95% CI: -0.72 to -0.69; P < 0.001; slope in adjusted meta-regression models = -0.64; -1.06 to -0.22; P = 0.003). The slopes in the meta-regression model were modified by fertility (P for interaction = 0.064) and geographic group (P for interaction = 0.027). There was a significant decline in SC between 1973 and 2011 among Unselected Western (-1.38; -2.02 to -0.74; P < 0.001) and among Fertile Western (-0.68; -1.31 to -0.05; P = 0.033), while no significant trends were seen among Unselected Other and Fertile Other. Among Unselected Western studies, the mean SC declined, on average, 1.4% per year with an overall decline of 52.4% between 1973 and 2011. Trends for TSC and SC were similar, with a steep decline among Unselected Western (-5.33 million/year, -7.56 to -3.11; P < 0.001), corresponding to an average decline in mean TSC of 1.6% per year and overall decline of 59.3%. Results changed minimally in multiple sensitivity analyses, and there was no statistical support for the use of a nonlinear model. In a model restricted to data post-1995, the slope both for SC and TSC among Unselected Western was similar to that for the entire period (-2.06 million/ml, -3.38 to -0.74; P = 0.004 and -8.12 million, -13.73 to -2.51, P = 0.006, respectively).

WIDER IMPLICATIONS: This comprehensive meta-regression analysis reports a significant decline in sperm counts (as measured by SC and TSC) between 1973 and 2011, driven by a 50-60% decline among men unselected by fertility from North America, Europe, Australia and New Zealand. Because of the significant public health implications of these results, research on the causes of this continuing decline is urgently needed.


Gorga et al., 2021

Gorga, A., Rindone, G. M., Centola, C. L., Sobarzo, C. M., Pellizzari, E. H., Camberos, M. D. C., Marin-Briggiler, C. I., Cohen, D. J., Riera, M. F., Galardo, M. N., & Meroni, S. B.; “Low Doses of Glyphosate/Roundup Alter Blood-Testis Barrier Integrity in Juvenile Rats;” Frontiers in Endocrinology, 2021, 12, 615678; DOI: 10.3389/fendo.2021.615678.


It has been postulated that glyphosate (G) or its commercial formulation Roundup (R) might lead to male fertility impairment. In this study, we investigated the possible effects of G or R treatment of juvenile male rats on blood-testis barrier function and on adult male sperm production. Pups were randomly assigned to the following groups: control group (C), receiving water; G2 and G50 groups, receiving 2 and 50 mg/kg/day G respectively; and R2 and R50 groups receiving 2 and 50 mg/kg/day R respectively. Treatments were performed orally from postnatal day (PND) 14 to 30, period of life that is essential to complete a functional blood-testis barrier. Evaluation was done on PND 31. No differences in body and testis weight were observed between groups. Testis histological analysis showed disorganized seminiferous epithelium, with apparent low cellular adhesion in treated animals. Blood-testis barrier permeability to a biotin tracer was examined. A significant increase in permeable tubules was observed in treated groups. To evaluate possible mechanisms that could explain the effects on blood-testis barrier permeability, intratesticular testosterone levels, androgen receptor expression, thiobarbituric acid reactive substances (TBARS) and the expression of intercellular junction proteins (claudin11, occludin, ZO-1, connexin43, 46, and 50 which are components of the blood-testis barrier) were examined. No modifications in the above-mentioned parameters were detected. To evaluate whether juvenile exposure to G and R could have consequences during adulthood, a set of animals of the R50 group was allowed to grow up until PND 90. Histological analysis showed that control and R50 groups had normal cellular associations and complete spermatogenesis. Also, blood-testis barrier function was recovered and testicular weight, daily sperm production, and epididymal sperm motility and morphology did not seem to be modified by juvenile treatment. In conclusion, the results presented herein show that continuous exposure to low doses of G or R alters blood-testis barrier permeability in juvenile rats. However, considering that adult animals treated during the juvenile stage showed no differences in daily sperm production compared with control animals, it is feasible to think that blood-testis barrier impairment is a reversible phenomenon. More studies are needed to determine possible damage in the reproductive function of human juvenile populations exposed to low doses of G or R. FULL TEXT

Sanchez et al., 2018

Sanchez, M. C., Alvarez Sedo, C., Chaufan, G. R., Romanato, M., Da Cuna, R., Lo Nostro, F., Calvo, J. C., & Fontana, V.; “In vitro effects of endosulfan-based insecticides on mammalian sperm;” Toxicology Research, 2018, 7(1), 117-126; DOI: 10.1039/c7tx00251c.


Endosulfan is an organochloride insecticide extensively used in several countries to protect crops from pests. As several studies indicate that endosulfan can affect human and animal development, the aim of this study was to analyse whether sperm parameters and the process of chromatin decondensation could be altered by endosulfan in mice sperm. Spermatozoa from cauda epididymis were obtained from mature male mice and incubated in the presence of two commercial formulations (CFs) of endosulfan (Master(R) and Zebra Ciagro(R)) or the active ingredient (AI) alone. A significant decrease in the percentage motility and viability of spermatozoa with respect to controls was found. In vitro decondensation was performed in the presence of glutathione and heparin. Spermatozoa incubated with the AI, endosulfan Master(R) and endosulfan Zebra Ciagro(R) showed an increase in chromatin decondensation. In addition, the TUNEL assay showed that DNA fragmentation was significantly higher when sperm were incubated with either one of the CFs when compared to the AI or controls. The ultrastructure analysis of sperm cells showed evident changes in the structure of the plasma and acrosome membranes of sperm incubated with endosulfan AI or the CFs. These results suggest that endosulfan can affect sperm integrity and in vitro chromatin decondensation as well as DNA fragmentation. FULL TEXT

Andersen et al., 2008

Andersen, H. R., Schmidt, I. M., Grandjean, P., Jensen, T. K., Budtz-Jorgensen, E., Kjaerstad, M. B., Baelum, J., Nielsen, J. B., Skakkebaek, N. E., & Main, K. M.; “Impaired reproductive development in sons of women occupationally exposed to pesticides during pregnancy;” Environmental Health Perspectives, 2008, 116(4), 566-572; DOI: 10.1289/ehp.10790.


OBJECTIVES: The aim of this prospective study was to investigate whether occupational pesticide exposure during pregnancy causes adverse effects on the reproductive development in the male infants.

DESIGN AND MEASUREMENTS: Pregnant women employed in greenhouses in Denmark were consecutively recruited, and 113 mother-son pairs were included. The mothers were categorized as occupationally exposed (91 sons) or unexposed (22 sons) to pesticides during pregnancy. Testicular position and volume, penile length, and position of urethral opening were determined at 3 months of age using standardized techniques. Concentrations of reproductive hormones in serum from the boys were analyzed.

RESULTS: The prevalence of cryptorchidism at 3 months of age was 6.2% [95% confidence interval (CI), 3.0-12.4]. This prevalence was considerably higher than among Danish boys born in the Copenhagen area (1.9%; 95% CI, 1.2-3.0) examined by the same procedure. Boys of pesticide-exposed mothers showed decreased penile length, testicular volume, serum concentrations of testosterone, and inhibin B. Serum concentrations of sex hormone-binding globulin, follicle-stimulating hormone, and the luteinizing hormone: testosterone ratio were increased compared with boys of nonexposed mothers. For individual parameters, only the decreased penile length was statistically significant (p = 0.04). However, all observed effects were in the anticipated direction, and a joint multivariate test showed that this finding had a p-value of 0.012.

CONCLUSIONS: Our findings suggest an adverse effect of maternal occupational pesticide exposure on reproductive development in the sons despite current greenhouse safeguards and special measures to protect pregnant women.


Scholze et al., 2020

Scholze, M., Taxvig, C., Kortenkamp, A., Boberg, J., Christiansen, S., Svingen, T., Lauschke, K., Frandsen, H., Ermler, S., Hermann, S. S., Pedersen, M., Lykkeberg, A. K., Axelstad, M., & Vinggaard, A. M.; “Quantitative in Vitro to in Vivo Extrapolation (QIVIVE) for Predicting Reduced Anogenital Distance Produced by Anti-Androgenic Pesticides in a Rodent Model for Male Reproductive Disorders;” Environ Health Perspect, 2020, 128(11), 117005; DOI: 10.1289/EHP6774.


BACKGROUND: Many pesticides can antagonize the androgen receptor (AR) or inhibit androgen synthesis in vitro but their potential to cause reproductive toxicity related to disruption of androgen action during fetal life is difficult to predict. Currently no approaches for using in vitro data to anticipate such in vivo effects exist. Prioritization schemes that limit unnecessary in vivo testing are urgently needed.

OBJECTIVES: The aim was to develop a quantitative in vitro to in vivo extrapolation (QIVIVE) approach for predicting in vivo anti-androgenicity arising from gestational exposures and manifesting as a shortened anogenital distance (AGD) in male rats.

METHODS: We built a physiologically based pharmacokinetic (PBK) model to simulate concentrations of chemicals in the fetus resulting from maternal dosing. The predicted fetal levels were compared with analytically determined concentrations, and these were judged against in vitro active concentrations for AR antagonism and androgen synthesis suppression.

RESULTS: We first evaluated our model by using in vitro and in vivo anti-androgenic data for procymidone, vinclozolin, and linuron. Our PBK model described the measured fetal concentrations of parent compounds and metabolites quite accurately (within a factor of five). We applied the model to nine current-use pesticides, all with in vitro evidence for anti-androgenicity but missing in vivo data. Seven pesticides (fludioxonil, cyprodinil, dimethomorph, imazalil, quinoxyfen, fenhexamid, o-phenylphenol) were predicted to produce a shortened AGD in male pups, whereas two (lambda-cyhalothrin, pyrimethanil) were anticipated to be inactive. We tested these expectations for fludioxonil, cyprodinil, and dimethomorph and observed shortened AGD in male pups after gestational exposure. The measured fetal concentrations agreed well with PBK-modeled predictions.

DISCUSSION: Our QIVIVE model newly identified fludioxonil, cyprodinil, and dimethomorph as in vivo anti-androgens. With the examples investigated, our approach shows great promise for predicting in vivo anti-androgenicity (i.e., AGD shortening) for chemicals with in vitro activity and for minimizing unnecessary in vivo testing.  FULL TEXT

Dai et al., 2016

Dai, P., Hu, P., Tang, J., Li, Y., & Li, C.; “Effect of glyphosate on reproductive organs in male rat;” Acta Histochemica, 2016, 118(5), 519-526; DOI: 10.1016/j.acthis.2016.05.009.


Glyphosate as an active ingredient of Roundup((R)) which is thought to be one of the most popular herbicide was used worldwide. Many studies have focused on reproductive toxicity on glyphosate-based herbicide, but few evidence exists to imply the male reproductive toxicity of glyphosate alone in vivo. In this study SD rats were Lavaged with glyphosate at doses of 5, 50, 500mg/kg to detect the toxicity of glyphosate on rat testis. Glyphosate significantly decreased the average daily feed intake at dose of 50mg/kg, and the weight of seminal vesicle gland, coagulating gland as well as the total sperm count at dose of 500mg/kg. Immunohistochemistry of androgen receptor (AR) has no difference among all groups. As to testosterone, estradiol, progesterone and oxidative stress parameters, the level of them has no differences amidst all doses. Taken together, we conclude that glyphosate alone has low toxicity on male rats reproductive system.

Pham et al., 2019

Pham, T. H., Derian, L., Kervarrec, C., Kernanec, P. Y., Jegou, B., Smagulova, F., & Gely-Pernot, A.; “Perinatal Exposure to Glyphosate and a Glyphosate-Based Herbicide Affect Spermatogenesis in Mice;” Toxicological Science, 2019, 169(1), 260-271; DOI: 10.1093/toxsci/kfz039.


Glyphosate is the most widely used herbicide in the world. Several studies have investigated the effects of glyphosate and glyphosate-based herbicides (GBHs) on male reproduction, but there is still little and conflicting evidence for its toxicity. In this study, we analyzed the effects of glyphosate, alone or in formula, on the male reproductive system. Pregnant mice were treated from E10.5 to 20 days postpartum by adding glyphosate or a GBH (Roundup 3 Plus) to their drinking water at 0.5 (the acceptable daily intake, ADI dose), 5 and 50 mg/kg/day. Male offspring derived from treated mice were sacrificed at 5, 20, and 35 days old (d.o.) and 8 months old (m.o.) for analysis. Our result showed that exposure to glyphosate, but not GBH, affects testis morphology in 20 d.o. and decrease serum testosterone concentrations in 35 d.o. males. We identified that the spermatozoa number decreased by 89% and 84% in 0.5 and 5 mg/kg/day of GBH and glyphosate groups, respectively. Moreover, the undifferentiated spermatogonia numbers were decreased by 60% in 5 mg/kg/day glyphosate group, which could be due to the alterations in the expression of genes involved in germ cell differentiation such as Sall4 and Nano3 and apoptosis as Bax and Bcl2. In 8 m.o. animals, a decreased testosterone level was observed in GBH groups. Our data demonstrate that glyphosate and GBHs could cause endocrine-disrupting effects on male reproduction at low doses. As glyphosate has effects at the ADI level, our data suggest that the current ADI for glyphosate could be overestimated.

Griffin et al., 1997

Griffin, R. J., Godfrey, V. B., Kim, Y. C., & Burka, L. T.; “Sex-dependent differences in the disposition of 2,4-dichlorophenoxyacetic acid in Sprague-Dawley rats, B6C3F1 mice, and Syrian hamsters;” Drug Metabolism and Disposition, 1997, 25(9), 1065-1071.


2,4-Dichlorophenoxyacetic acid (2,4-D), a widely used broadleaf herbicide, is under investigation in a study of peroxisome proliferators. To supplement that study, male and female rats, mice, and hamsters were dosed with 14C-2,4-D orally at 5 and 200 mg/kg and tissue distributions were determined. Blood, liver, kidney, muscle, skin, fat, brain, testes, and ovaries were examined. At early time points tissues from female rats consistently contained higher amounts of radioactivity than did corresponding tissues from males (up to 9 times). By 72 hr, tissue levels were equivalent and males and females had excreted equal amounts of radioactivity. This sex difference was absent in mice. In hamsters, males had higher tissue levels than females. Taurine, glycine, and glucuronide conjugates of 2,4-D were excreted along with parent. Metabolite profiles differed between species qualitatively and quantitatively; however, differences between sexes were minimal. Plasma elimination curves were generated in male and female rats after iv and oral administration. Kinetic analysis revealed significant differences in elimination and exposure parameters consistent with a greater ability to clear 2,4-D by male rats relative to females. This suggests that at equivalent doses, female rats are exposed to higher concentrations of 2,4-D for a longer time than males and may be more susceptible to 2,4-D-induced toxicity. These sex-dependent variations in the clearance of 2,4-D in rats and hamsters may indicate a need for sex-specific models to accurately assess human health risks. FULL TEXT

Christensen et al., 2016

Christensen, C. H., Barry, K. H., Andreotti, G., Alavanja, M. C., Cook, M. B., Kelly, S. P., Burdett, L. A., Yeager, M., Beane Freeman, L. E., Berndt, S. I., & Koutros, S.; “Sex Steroid Hormone Single-Nucleotide Polymorphisms, Pesticide Use, and the Risk of Prostate Cancer: A Nested Case-Control Study within the Agricultural Health Study;” Frontiers in Oncology, 2016, 6, 237; DOI: 10.3389/fonc.2016.00237.


Experimental and epidemiologic investigations suggest that certain pesticides may alter sex steroid hormone synthesis, metabolism or regulation, and the risk of hormone-related cancers. Here, we evaluated whether single-nucleotide polymorphisms (SNPs) involved in hormone homeostasis alter the effect of pesticide exposure on prostate cancer risk. We evaluated pesticide-SNP interactions between 39 pesticides and SNPs with respect to prostate cancer among 776 cases and 1,444 controls nested in the Agricultural Health Study cohort. In these interactions, we included candidate SNPs involved in hormone synthesis, metabolism or regulation (N = 1,100), as well as SNPs associated with circulating sex steroid concentrations, as identified by genome-wide association studies (N = 17). Unconditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Multiplicative SNP-pesticide interactions were calculated using a likelihood ratio test. We translated p-values for interaction into q-values, which reflected the false discovery rate, to account for multiple comparisons. We observed a significant interaction, which was robust to multiple comparison testing, between the herbicide dicamba and rs8192166 in the testosterone metabolizing gene SRD5A1 (p-interaction = 4.0 x 10(-5); q-value = 0.03), such that men with two copies of the wild-type genotype CC had a reduced risk of prostate cancer associated with low use of dicamba (OR = 0.62 95% CI: 0.41, 0.93) and high use of dicamba (OR = 0.44, 95% CI: 0.29, 0.68), compared to those who reported no use of dicamba; in contrast, there was no significant association between dicamba and prostate cancer among those carrying one or two copies of the variant T allele at rs8192166. In addition, interactions between two organophosphate insecticides and SNPs related to estradiol metabolism were observed to result in an increased risk of prostate cancer. While replication is needed, these data suggest both agonistic and antagonistic effects on circulating hormones, due to the combination of exposure to pesticides and genetic susceptibility, may impact prostate cancer risk. FULL TEXT

Alexander et al., 2017

Alexander, M., Koutros, S., Bonner, M. R., Barry, K. H., Alavanja, M. C. R., Andreotti, G., Byun, H. M., Chen, L., Beane Freeman, L. E., Hofmann, J. N., Kamel, F., Moore, L. E., Baccarelli, A., & Rusiecki, J.; “Pesticide use and LINE-1 methylation among male private pesticide applicators in the Agricultural Health Study;” Environ Epigenet, 2017, 3(2), dvx005; DOI: 10.1093/eep/dvx005.


Cancer risk may be associated with DNA methylation (DNAm) levels in Long Interspersed Nucleotide Element 1 (LINE-1), a surrogate for global DNAm. Exposure to certain pesticides may increase risk of particular cancers, perhaps mediated in part through global DNAm alterations. To date, human data on pesticide exposure and global DNAm alterations are limited. The goal of this study was to evaluate alterations of LINE-1 DNAm by pesticides in a variety of classes. Data from 596 cancer-free male participants enrolled in the Agricultural Health Study (AHS) were used to examine associations between use of 57 pesticides and LINE-1 DNAm measured via Pyrosequencing in peripheral blood leucocytes. Participants provided information on pesticide use at three contacts between 1993 and 2010. Associations of ever/never pesticide use and lifetime days of application (years of use x days per year) and LINE-1 DNAm level were assessed using linear regression, adjusting for potential confounders (race, age at blood draw, and frequency of drinking alcohol) and other moderately correlated pesticides. After adjustment, ever application of 10 pesticides was positively associated and ever application of eight pesticides was negatively associated with LINE-1 DNAm. In dose-response analyses, increases in five pesticides (imazethapyr, fenthion, EPTC, butylate, and heptachlor) were associated with increasing LINE-1 DNAm (ptrend < 0.05) and increases in three pesticides (carbaryl, chlordane, and paraquat) were associated with decreasing LINE-1 DNAm (ptrend < 0.05). This study provides some mechanistic insight into the pesticide-cancer relationship, which may be mediated in part by epigenetics. FULL TEXT