skip to Main Content

Bibliography Tag: male reproductive impacts

Romano et al., 2011

Romano MA, Romano RM, Santos LD, Wisniewski P, Campos DA, de Souza PB, Viau P, Bernardi MM, Nunes MT, de Oliveira CA, “Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression.,” Archives in Toxicology, 2012, 86:4, DOI: 10.1007/s00204-011-0788-9.

ABSTRACT:

Sexual differentiation in the brain takes place from late gestation to the early postnatal days. This is dependent on the conversion of circulating testosterone into estradiol by the enzyme aromatase. The glyphosate was shown to alter aromatase activity and decrease serum testosterone concentrations. Thus, the aim of this study was to investigate the effect of gestational maternal glyphosate exposure (50 mg/kg, NOAEL for reproductive toxicity) on the reproductive development of male offspring. Sixty-day-old male rat offspring were evaluated for sexual behavior and partner preference; serum testosterone concentrations, estradiol, FSH and LH; the mRNA and protein content of LH and FSH; sperm production and the morphology of the seminiferous epithelium; and the weight of the testes, epididymis and seminal vesicles. The growth, the weight and age at puberty of the animals were also recorded to evaluate the effect of the treatment. The most important findings were increases in sexual partner preference scores and the latency time to the first mount; testosterone and estradiol serum concentrations; the mRNA expression and protein content in the pituitary gland and the serum concentration of LH; sperm production and reserves; and the height of the germinal epithelium of seminiferous tubules. We also observed an early onset of puberty but no effect on the body growth in these animals. These results suggest that maternal exposure to glyphosate disturbed the masculinization process and promoted behavioral changes and histological and endocrine problems in reproductive parameters. These changes associated with the hypersecretion of androgens increased gonadal activity and sperm production.

Marouani et al., 2017

Neila Marouani, Olfa Tebourbi, Donia Cherif, Dorsaf Hallegue, Mohamed Tahar Yacoubi, Mohsen Sakly, Moncef Benkhalifa, Khemais Ben Rhouma, “Effects of oral administration of 2,4-dichlorophenoxyacetic acid (2,4-D) on reproductive parameters in male Wistar rats,” Environmental Science and Pollution Research, January 2017, Volume 24:1, DOI: 10.1007/s11356-016-7656-3.

ABSTRACT:

The 2,4-dichlorophenoxyacetic acid (2,4-D) is used worldwide in agriculture as a selective herbicide. It has been shown to produce a wide range of adverse effects on the health of both animals and humans from embryotoxicity and teratogenicity to neurotoxicity. In the present study, we have examined the effect of 2,4-D on male reproductive function of rats. Male Wistar rats received daily by force-feeding 100 or 200 mg of 2,4-D/kg body weight for 30 consecutive days. Rats exposed to 100 and 200 mg of 2,4-D/kg showed a significant decrease in body weights only after 24 days of treatment and in relative weights of testis, seminal vesicles and prostate at killing day, when compared with controls. Moreover, a decrease in testosterone and an increase in FSH and LH serum levels were detected in treated rats. Besides, exposure to this herbicide induced pronounced testicular histological alterations with enlarged intracellular spaces, tissue loosening and dramatic loss of gametes in the lumen of the seminiferous tubules. In addition, a decreased motility and a number of epididymal spermatozoa with an increased sperm abnormality rate were found in treated rats in comparison with control. With the highest dose, histological observations of seminal vesicles indicated a considerable decrease of secretions in the lumen, a thinness of the muscle layer surrounding the epithelium with branched mucosal crypts and reduced luminal space. In prostate, the heights of the cells decreased while acinar lumen were enlarged and they lost the typical invaginations. Our results suggest that a subacute treatment of 2,4-D promotes reproductive system toxicity.

Benachour et al., 2007

N. Benachour, H. Sipahutar, S. Moslemi, C. Gasnier, C. Travert, G. E. Séralini, “Time- and Dose-Dependent Effects of Roundup on Human Embryonic and Placental Cells,” Archives of Environmental Contamination and Toxicology, 53:1, July 2007, DOI: doi.org/10.1007/s00244-006-0154-8

ABSTRACT:

Roundup® is the major herbicide used worldwide, in particular on genetically modified plants that have been designed to tolerate it. We have tested the toxicity and endocrine disruption potential of Roundup (Bioforce®) on human embryonic 293 and placental-derived JEG3 cells, but also on normal human placenta and equine testis. The cell lines have proven to be suitable to estimate hormonal activity and toxicity of pollutants. The median lethal dose (LD50) of Roundup with embryonic cells is 0.3% within 1 h in serum-free medium, and it decreases to reach 0.06% (containing among other compounds 1.27 mM glyphosate) after 72 h in the presence of serum. In these conditions, the embryonic cells appear to be 2–4 times more sensitive than the placental ones. In all instances, Roundup (generally used in agriculture at 1–2%, i.e., with 21–42 mM glyphosate) is more efficient than its active ingredient, glyphosate, suggesting a synergistic effect provoked by the adjuvants present in Roundup. We demonstrated that serum-free cultures, even on a short-term basis (1 h), reveal the xenobiotic impacts that are visible 1–2 days later in serum. We also document at lower non-overtly toxic doses, from 0.01% (with 210 μM glyphosate) in 24 h, that Roundup is an aromatase disruptor. The direct inhibition is temperature-dependent and is confirmed in different tissues and species (cell lines from placenta or embryonic kidney, equine testicular, or human fresh placental extracts). Furthermore, glyphosate acts directly as a partial inactivator on microsomal aromatase, independently of its acidity, and in a dose-dependent manner. The cytotoxic, and potentially endocrine-disrupting effects of Roundup are thus amplified with time. Taken together, these data suggest that Roundup exposure may affect human reproduction and fetal development in case of contamination. Chemical mixtures in formulations appear to be underestimated regarding their toxic or hormonal impact. FULL TEXT

 

Szekacs and Darvas, 2012

András Székács and Béla Darvas, “Forty Years with Glyphosate,” 2010, in Herbicides- Properties, Synthesis, and Control of Weeds, edited by Mohammed Naguib Abd El-Ghany Hasaneen.

ABSTRACT:

Not Available

FULL TEXT

 

Perry et al., 2007

Perry MJ, Venners SA, Barr DB, Xu X., “Environmental pyrethroid and organophosphorus insecticide exposures and sperm concentration,” Reproductive Toxicology, 2007, 23:1, DOI: 10.1016/J.REPROTOX.2006.08.005.

ABSTRACT:

BACKGROUND: There is growing concern that poisoning and other adverse health effects are increasing because organophosphorous (OP) insecticides are now being used in combination with pyrethroid (PYR) insecticides to enhance the toxic effects of PYR insecticides on target insects, especially those that have developed PYR resistance.

OBJECTIVES: We conducted a pilot biomonitoring study to determine whether men in our reproductive cohort study were being exposed to pesticides environmentally by virtue of frequenting an agricultural setting.

METHODS: We screened 18 randomly selected urine samples collected from male participants of reproductive age for 24 parent compounds and metabolites of pesticides and examined the results in relation to sperm concentration.

RESULTS: Results showed high prevalence of exposure to OP and PYR pesticides and our preliminary analyses provided some suggestion that the higher exposure group had lower sperm concentration.

CONCLUSIONS: The potential of OP/PYR mixtures to have enhanced human toxicity needs more research attention.

Glynnis English et al., 2012

René Glynnis English, Melissa Perry, Mary M. Lee, Elaine Hoffman, Steven Delport, Mohamed Aqiel Dalvie, “Farm residence and reproductive health among boys in rural South Africa,” Environment International, 2012, 47, DOI: 10.1016/J.Envint.2012.06.006.

ABSTRACT:

Few studies have investigated reproductive health effects of contemporary agricultural pesticides in boys. To determine the association between pesticide exposure and reproductive health of boys. We conducted a cross-sectional study in rural South Africa of boys living on and off farms. The study included a questionnaire (demographics, general and reproductive health, phyto-estrogen intake, residential history, pesticide exposures, exposures during pregnancy); and a physical examination that included sexual maturity development ratings; testicular volume; height, weight, body mass index; and sex hormone concentrations. Among the 269 boys recruited into the study, 177 (65.8%) were categorized as farm (high pesticide exposures) and 98 (34.2%) as non-farm residents (lower pesticide exposures). Median ages of the two groups were 11.3 vs 12.0 years, respectively (p<0.05). After controlling for confounders that included socioeconomic status, farm boys were shorter (regression coefficient (RC)=-3.42 cm; 95% confidence interval (CI): -6.38 to -0.45 cm) and weighed less (RC=-2.26 kg; CI: -4.44 to -0.75 kg). The farm boys also had lower serum lutenizing hormone (RC=-0.28 IU/L; CI: -0.48 to -0.08 IU/L), but higher serum oestradiol (RC=8.07 pmol/L; CI: 2.34-13.81 pmol/L) and follicle stimulating hormone (RC=0.63 IU/L; CI: 0.19-1.08 U/L). Our study provides evidence that farm residence is associated with adverse growth and reproductive health of pubertal boys which may be due to environmental exposures to hormonally active contemporary agricultural pesticides.

Perry, 2008

Melissa J. Perry, “Effects of environmental and occupational pesticide exposure on human sperm: a systematic review,” Human Reproduction Update, 2008, 14:3, DOI: 10.1093/HUMUPD/DMM039.

ABSTRACT:

Relatively recent discoveries of the hormone disrupting properties of some pesticides have raised interest in how contemporary pesticide exposures, which primarily take the form of low level environmental or occupational exposures, impact spermatogenesis. The objective of the present review was to summarize results to date of studies examining pesticide effects on human sperm. Outcomes evaluated included sperm parameters, DNA damage and numerical chromosome aberrations (aneuploidy (disomy, nullisomy) or diploidy). Studies investigating sperm in men environmentally and/or occupationally exposed to any types of pesticides were included in the review. The targeted literature search over the last 15 years showed a range of pesticide classes have been investigated including pyrethroids, organophosphates, phenoxyacetic acids, carbamates, organochlorines and pesticide mixtures. None of the studies involved acute exposure events such as chemical accidents. There were 20 studies evaluating semen quality, of which 13 studies reported an association between exposure and semen quality; 6 studies evaluating DNA damage, of which 3 reported an association with exposure; and 6 studies assessing sperm aneuploidy or diploidy, of which 4 reported an association with exposure. Studies varied widely in methods, exposures and outcomes. Although suggestive for semen parameters, the epidemiologic evidence accumulated thus far remains equivocal as to the spermatotoxic and aneugenic potential of pesticides given the small number of published studies. This question warrants more investigation and suggestions for future studies are outlined.  FULL TEXT

Young et al., 2013

Heather A Young, John D Meeker, Sheena E Martenies, Zaida I Figueroa, Dana Boyd Barr and Melissa J Perry, “Environmental exposure to pyrethroids and sperm sex chromosome disomy: a cross-sectional study,” Environmental  Health, 2013, 12:111, DOI: 10.1186/1476-069X-12-111.

ABSTRACT:

BACKGROUND: The role of environmental pesticide exposures, such as pyrethroids, and their relationship to sperm abnormalities are not well understood. This study investigated whether environmental exposure to pyrethroids was associated with altered frequency of sperm sex chromosome disomy in adult men.

METHODS: A sample of 75 subjects recruited through a Massachusetts infertility clinic provided urine and semen samples. Individual exposures were measured as urinary concentrations of three pyrethroid metabolites ((3-phenoxybenzoic acid (3PBA), cis- and trans- 3-(2,2-Dichlorovinyl)-1-methylcyclopropane-1,2-dicarboxylic acid (CDCCA and TDCCA)). Multiprobe fluorescence in situ hybridization for chromosomes X, Y, and 18 was used to determine XX, YY, XY, 1818, and total sex chromosome disomy in sperm nuclei. Poisson regression analysis was used to examine the association between aneuploidy rates and pyrethroid metabolites while adjusting for covariates.

RESULTS: Between 25-56% of the sample were above the limit of detection (LOD) for the pyrethroid metabolites. All sex chromosome disomies were increased by 7-30% when comparing men with CDCCA and TDCCA levels above the LOD to those below the LOD. For 3PBA, compared to those below the LOD, those above the LOD had YY18 disomy rates 1.28 times higher (95% CI: 1.15, 1.42) whereas a reduced rate was seen for XY18 and total disomy (IRR = 0.82; 95% CI: 0.77, 0.87; IRR = 0.93; 95% CI: 0.87-0.97), and no association was seen for XX18 and 1818.

CONCLUSIONS: Our findings suggest that urinary concentrations of CDCCA and TDCCA above the LOD were associated with increased rates of aneuploidy. However the findings for 3BPA were not consistent. This is the first study to examine these relationships, and replication of our findings is needed before the association between pyrethroid metabolites and aneuploidy can be fully defined.  FULL TEXT

Perry et al., 2011

Melissa J. Perry, Scott A. Venners, Xing Chen, Xue Liu, Genfu Tang, Houxun Xing, Dana Boyd Barr, Xiping Xu, “Organophosphorous pesticide exposures and sperm quality,” Reproductive Toxicology, 2011, 31:1, DOI: 10.1016/j.reprotox.2010.08.006.

ABSTRACT:

Many Americans are exposed to low levels of organophosphorous (OP) pesticides. It is unclear whether these exposures impact sperm production. We investigated whether there was an association between urinary OP insecticide metabolites and sperm concentration and motility in newly married men from a rural area of eastern People’s Republic of China. Ninety-four cases and 95 controls were included based on their median residual value of sperm concentration and motility after adjusting for relevant covariates. Their urine was analyzed for six dialkylphosphate (DAP) compounds. After adjustment for demographic and exposure variables, the odds of being a case were greater (odds ratio = 1.30, 95% confidence interval 1.02–1.65) in men with higher urinary concentrations of dimethylphosphate (DMP) compared to men with lower levels. No significant differences between cases and controls were found among the other DAP concentrations. DMP exposure and sperm concentration and motility should be explored further in environmental exposure studies.

 

Crews et al., 2007

David Crews, Andrea C. Gore, Timothy S. Hsu, Nygerma L. Dangleben, Michael Spinetta, Timothy Schallert, Matthew D. Anway, and Michael K. Skinner, “Transgenerational epigenetic imprints on mate preference,” PNAS, 2007, 104:14, DOI: 10.1073/PNAS.0610410104.

ABSTRACT:

Environmental contamination by endocrine-disrupting chemicals (EDC) can have epigenetic effects (by DNA methylation) on the germ line and promote disease across subsequent generations. In natural populations, both sexes may encounter affected as well as unaffected individuals during the breeding season, and any diminution in attractiveness could compromise reproductive success. Here we examine mate preference in male and female rats whose progenitors had been treated with the antiandrogenic fungicide vinclozolin. This effect is sex-specific, and we demonstrate that females three generations removed from the exposure discriminate and prefer males who do not have a history of exposure, whereas similarly epigenetically imprinted males do not exhibit such a preference. The observations suggest that the consequences of EDCs are not just transgenerational but can be ‘‘transpopulational’’, because in many mammalian species, males are the dispersing sex. This result indicates that epigenetic transgenerational inheritance of EDC action represents an unappreciated force in sexual selection. Our observations provide direct experimental evidence for a role of epigenetics as a determinant factor in evolution.  FULL TEXT

Back To Top