skip to Main Content

Bibliography Tag: pesticide exposure

Boobis et al., 2008

Boobis, A. R., Ossendorp, B. C., Banasiak, U., Hamey, P. Y., Sebestyen, I., & Moretto, A.; “Cumulative risk assessment of pesticide residues in food;” Toxicology Letters, 2008, 180(2), 137-150; DOI: 10.1016/j.toxlet.2008.06.004.

ABSTRACT:

There is increasing need to address the potential risks of combined exposures to multiple residues from pesticides in the diet. The available evidence suggests that the main concern is from dose addition of those compounds that act by the same mode of action. The possibility of synergy needs to be addressed on a case-by-case basis, where there is a biologically plausible hypothesis that it may occur at the levels of residues occurring in the diet. Cumulative risk assessment is a resource-intense activity and hence a tiered approach to both toxicological evaluation and intake estimation is recommended, and the European Food Safety Authority (EFSA) has recently published such a proposal. Where assessments have already been undertaken by some other authority, full advantage should be taken of these, subject of course to considerations of quality and relevance. Inclusion of compounds in a cumulative assessment group (CAG) should be based on defined criteria, which allow for refinement in a tiered approach. These criteria should include chemical structure, mechanism of pesticidal action, target organ and toxic mode of action. A number of methods are available for cumulating toxicity. These are all inter-related, but some are mathematically more complex than others. The most useful methods, in increasing levels of complexity and refinement, are the hazard index, the reference point index, the Relative Potency Factor method and physiologically based toxicokinetic modelling, although this last method would only be considered should a highly refined assessment be necessary. Four possible exposure scenarios are of relevance for cumulative risk assessment, acute and chronic exposure in the context of maximum residue level (MRL)-setting, and in relation to exposures from the actual use patterns, respectively. Each can be addressed either deterministically or probabilistically. Strategies for dealing with residues below the limit of detection, limit of quantification or limit of reporting need to be agreed. A number of probabilistic models are available, but some of there are geographically constrained due to the underlying datasets used in their construction. Guidance on probabilistic modelling needs to be finalised. Cumulative risk assessments have been performed in a number of countries, on organophosphate insecticides alone (USA) or together with carbamates (UK, DK, NL), triazines, chloroacetanilides, carbamates alone (USA), and all pesticides (DE). All identifiable assumptions and uncertainties should be tabulated and evaluated, at least qualitatively. Those likely to have a major impact on the outcome of the assessment should be examined quantitatively. In cumulative risk assessment, it is necessary, as in other risk assessments, for risk managers to consider what level of risk would be considered “acceptable”, for example what percentile of the population should be below the reference value. Criteria for prioritising CAGs for cumulative risk assessment include frequency of detection in monitoring programmes, high usage, high exposure relative to the reference value, large number of compounds (e.g. five or more) in a group. FULL TEXT

Curl et al., 2020

Curl, C. L., Spivak, M., Phinney, R., & Montrose, L.; “Synthetic Pesticides and Health in Vulnerable Populations: Agricultural Workers;” Current Environmental Health Reports, 2020, 7(1), 13-29; DOI: 10.1007/s40572-020-00266-5.

ABSTRACT:

PURPOSE OF REVIEW: This review aims to summarize epidemiological literature published between May 15, 2018, and May 14, 2019, that examines the relationship between exposure to synthetic pesticides and health of agricultural workers.

RECENT FINDINGS: Current research suggests that exposure to synthetic pesticides may be associated with adverse health outcomes. Agricultural workers represent a potentially vulnerable population, due to a combination of unique social and cultural risk factors as well as exposure to hazards inherent in agricultural work. Pesticide exposure among agricultural workers has been linked to certain cancers, DNA damage, oxidative stress, neurological disorders, and respiratory, metabolic, and thyroid effects.

SUMMARY: This review describes literature suggesting that agricultural workers exposed to synthetic pesticides are at an increased risk of certain cancers and neurological disorders. Recent research on respiratory effects is sparse, and more research is warranted regarding DNA damage, oxidative stress, metabolic outcomes, and thyroid effects. FULL TEXT

Van Stempvoort et al., 2014

Van Stempvoort, D. R., Roy, J. W., Brown, S. J., & Bickerton, G.; “Residues of the herbicide glyphosate in riparian groundwater in urban catchments;” Chemosphere, 2014, 95, 455-463; DOI: 10.1016/j.chemosphere.2013.09.095.

ABSTRACT:

The herbicide glyphosate and its putative metabolite aminomethylphosphonic acid (AMPA) have been found in urban streams, but limited information is available on their presence in urban riparian groundwater. Information is also lacking regarding the source of AMPA in these urban settings (glyphosate metabolite or wastewater), and whether, if present, glyphosate residues in urban riparian groundwater contribute significantly to urban streams. Glyphosate and AMPA were detected in shallow riparian groundwater at 4 of 5 stream sites in urban catchments in Canada and each were found in approximately 1 in 10 of the samples overall. Frequency of observations of glyphosate and AMPA varied substantially between sites, from no observations in a National Park near the Town of Jasper Alberta, to observations of both glyphosate and AMPA in more than half of the samples along two short reaches of streams in Burlington, Ontario. In these two catchments, AMPA was correlated with glyphosate, rather than the artificial sweetener acesulfame, suggesting that the AMPA is derived mainly from glyphosate degradation rather than from wastewater sources. Land use, localized dosage history, depth below ground and other factors likely control the occurrence of detectable glyphosate residues in groundwater. FULL TEXT

Aparicio et al., 2018

Aparicio, Virginia C., Aimar, Silvia, De Gerónimo, Eduardo, Mendez, Mariano J., & Costa, José L.; “Glyphosate and AMPA concentrations in wind-blown material under field conditions;” Land Degradation & Development, 2018, 29(5), 1317-1326; DOI: 10.1002/ldr.2920.

ABSTRACT:

Agricultural intensification in fragile arid and semiarid environments has led to an increase in soil degradation, mainly through wind erosion. Argentina is an agricultural and cattle‐farming country, which has increased its productivity in the last few decades, widening the boundaries of farm land and the use of herbicides to control weeds. Glyphosate, which accounts for 65% of the Argentinian pesticides market, is strongly retained in soil. The World Health Organization concluded that there was evidence to classify glyphosate as ‘probably carcinogenic to humans.’ In this context, the objective of this study was to determine the presence and concentration of glyphosate and aminomethylphosphonic acid (AMPA) in wind‐blown material in 3 areas in Argentine semiarid regions (Chaco, La Pampa, and San Luis). In 1‐ha2 plots, left uncovered and levelled, the wind‐blown material was collected at heights of 13.5, 50, and 150 cm during 18 erosion events. The wind‐blown material carried by the wind at a height of 150 cm had concentrations of 247 and 218 μgkg−1 of glyphosate and AMPA, respectively. This material was enriched 60 times in glyphosate and 3 times in AMPA as compared with the original soil. This shows that the eroded material can, potentially, have a negative impact on the ecosystem and also on human health, depending on the proportion of this material released into the atmosphere in suspension as particulate matter. This study is, to our knowledge, the first to report concentrations of glyphosate and AMPA in wind‐blown material under field conditions. FULL TEXT

Gilden et al., 2012

Gilden, R., Friedmann, E., Sattler, B., Squibb, K., & McPhaul, K.; “Potential health effects related to pesticide use on athletic fields;” Public Health Nursing, 2012, 29(3), 198-207; DOI: 10.1111/j.1525-1446.2012.01016.x.

ABSTRACT:

OBJECTIVES: Children come in contact with athletic fields on a daily basis. How these fields are maintained may have an impact on children’s potential exposure to pesticides and associated health effects.

DESIGN AND SAMPLE: This is a cross-sectional, descriptive study that utilized a survey to assess playing field maintenance practices regarding the use of pesticides. Athletic fields (N = 101) in Maryland were stratified by population density and randomly selected. MEASURES: A survey was administered to field managers (n = 33) to assess maintenance practices, including the use of pesticides. Analysis included descriptive statistics and generalized estimating equations.

RESULTS: Managers of 66 fields (65.3%) reported applying pesticides, mainly herbicides (57.4%). Managers of urban and suburban fields were less likely to apply pesticides than managers of rural fields. Combined cultivation practice was also a significant predictor of increased pesticide use.

CONCLUSIONS: The use of pesticides on athletic fields presents many possible health hazards. Results indicate that there is a significant risk of exposure to pesticide for children engaged in sports activities. Given that children are also often concurrently exposed to pesticides as food residues and from home pest management, we need to examine opportunities to reduce their exposures. Both policy and practice questions are raised.  FULL TEXT

Alarcon et al., 2005

Alarcon, W. A., Calvert, G. M., Blondell, J. M., Mehler, L. N., Sievert, J., Propeck, M., Tibbetts, D. S., Becker, A., Lackovic, M., Soileau, S. B., Das, R., Beckman, J., Male, D. P., Thomsen, C. L., & Stanbury, M.; “Acute illnesses associated with pesticide exposure at schools;” JAMA, 2005, 294(4), 455-465; DOI: 10.1001/jama.294.4.455.

ABSTRACT:

CONTEXT: Pesticides continue to be used on school property, and some schools are at risk of pesticide drift exposure from neighboring farms, which leads to pesticide exposure among students and school employees. However, information on the magnitude of illnesses and risk factors associated with these pesticide exposures is not available.

OBJECTIVE: To estimate the magnitude of and associated risk factors for pesticide related illnesses at schools.

DESIGN, SETTING AND PARTICIPANTS: Analysis of surveillance data from 1998 to 2002 of 2593 persons with acute pesticide-related illnesses associated with exposure at schools. Nationwide information on pesticide-related illnesses is routinely collected by 3 national pesticide surveillance systems: the National Institute for Occupational Safety and Health’s Sentinel Event Notification System for Occupational Risks pesticides program, the California Department of Pesticide Regulation, and the Toxic Exposure Surveillance System.

MAIN OUTCOME MEASURES: Incidence rates and severity of acute pesticide-related illnesses.

RESULTS: Incidence rates for 1998-2002 were 7.4 cases per million children and 27.3 cases per million school employee full-time equivalents. The incidence rates among children increased significantly from 1998 to 2002. Illness of high severity was found in 3 cases (0.1%), moderate severity in 275 cases (11%), and low severity in 2315 cases (89%). Most illnesses were associated with insecticides (n=895, 35%), disinfectants (n=830, 32%), repellents (n=335, 13%), or herbicides (n=279, 11%). Among 406 cases with detailed information on the source of pesticide exposure, 281 (69%) were associated with pesticides used at schools and 125 (31%) were associated with pesticide drift exposure from farmland.

CONCLUSIONS: Pesticide exposure at schools produces acute illnesses among school employees and students. To prevent pesticide-related illnesses at schools, implementation of integrated pest management programs in schools, practices to reduce pesticide drift, and adoption of pesticide spray buffer zones around schools are recommended.

FULL TEXT

Reynolds et al., 1994

Reynolds, P. M., Reif, J. S., Ramsdell, H. S., & Tessari, J. D.; “Canine exposure to herbicide-treated lawns and urinary excretion of 2,4-dichlorophenoxyacetic acid;” Cancer Epidemiology, Biomarkers, & Prevention, 1994, 3(3), 233-237.

ABSTRACT:

A recent study by Hayes et al. (J. Natl. Cancer. Inst., 83: 1226-1231, 1991) found an increased risk of malignant lymphoma associated with exposure to 2,4-dichlorophenoxyacetic acid (2,4-D) in pet dogs. We conducted a study to determine the extent to which dogs absorb and excrete 2,4-D in urine after contact with treated lawns under natural conditions. Among 44 dogs potentially exposed to 2,4-D-treated lawns an average of 10.9 days after application, 2,4-D concentrations greater than or equal to 10.0 micrograms/l were found in 33 dogs (75%) and concentrations of > or = 50 micrograms/l were found in 17 (39%). Among 15 dogs with no known exposure to a 2,4-D-treated lawn in the previous 42 days, 4 (27%) had evidence of 2,4-D in urine, 1 at a concentration of > or = 50 micrograms/l. The odds ratio for the association between exposure to a 2,4-D-treated lawn and the detection of > or = 50 micrograms/l 2,4-D in urine was 8.8 (95% confidence interval, 1.4-56.2). Dogs exposed to lawns treated within 7 days before urine collection were more than 50 times as likely to have 2,4-D at concentrations > or = 50 micrograms/l than dogs with exposure to a lawn treated more than 1 week previously (odds ratio = 56.0; 95% confidence interval, 10.0-312.2). The highest mean concentration of 2,4-D in urine (21.3 mg/l) was found in dogs sampled within 2 days after application of the herbicide.(ABSTRACT TRUNCATED AT 250 WORDS) FULL TEXT

Glickman et al., 2004

Glickman, L. T., Raghavan, M., Knapp, D. W., Bonney, P. L., & Dawson, M. H.; “Herbicide exposure and the risk of transitional cell carcinoma of the urinary bladder in Scottish Terriers;” Journal of the American Veterinary Medical Association, 2004, 224(8), 1290-1297; DOI: 10.2460/javma.2004.224.1290.

ABSTRACT:

OBJECTIVE: To determine whether exposure to lawn or garden chemicals was associated with an increased risk of transitional cell carcinoma (TCC) of the urinary bladder in Scottish Terriers. DESIGN: Case-control study.

ANIMALS: 83 Scottish Terriers with TCC (cases) and 83 Scottish Terriers with other health-related conditions (controls).

PROCEDURE: Owners of study dogs completed a written questionnaire pertaining to exposure to lawn or garden chemicals during the year prior to diagnosis of TCC for case dogs and during a comparable period for control dogs.

RESULTS: The risk of TCC was significantly increased among dogs exposed to lawns or gardens treated with both herbicides and insecticides (odds ratio [OR], 7.19) or with herbicides alone (OR, 3.62), but not among dogs exposed to lawns or gardens treated with insecticides alone (OR, 1.62), compared with dogs exposed to untreated lawns. Exposure to lawns or gardens treated with phenoxy herbicides (OR, 4.42) was associated with an increased risk of TCC, compared with exposure to untreated lawns or gardens, but exposure to lawns or gardens treated with nonphenoxy herbicides (OR, 3.49) was not significantly associated with risk of TCC.

CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that exposure to lawns or gardens treated with herbicides was associated with an increased risk of TCC in Scottish Terriers. Until additional studies are performed to prove or disprove a cause-and-effect relationship, owners of Scottish Terriers should minimize their dogs’ access to lawns or gardens treated with phenoxy herbicides.

FULL TEXT

Hayes et al., 1991

Hayes, H. M., Tarone, R. E., Cantor, K. P., Jessen, C. R., McCurnin, D. M., & Richardson, R. C.; “Case-control study of canine malignant lymphoma: positive association with dog owner’s use of 2,4-dichlorophenoxyacetic acid herbicides;” Journal of the National Cancer Institute, 1991, 83(17), 1226-1231; DOI: 10.1093/jnci/83.17.1226.

ABSTRACT:

A hospital-based case-control study of companion dogs examined the risk of developing canine malignant lymphoma associated with the use of chemicals in and about the home. Information from a self-administered owner questionnaire and/or a telephone interview of about 491 cases, 466 nontumor controls, and 479 tumor controls indicated that owners in households with dogs that developed malignant lymphoma applied 2,4-dichlorophenoxyacetic acid (2,4-D) herbicides to their lawn and/or employed commercial lawn care companies to treat their yard significantly more frequently than control owners (odds ratio = 1.3). In addition, the risk of canine malignant lymphoma rose to a twofold excess with four or more yearly owner applications of 2,4-D. The findings in this study are consistent with occupational studies in humans, which have reported modest associations between agricultural exposure to 2,4-D and increased risk of non-Hodgkin’s lymphoma, the histology and epidemiology of which are similar to those of canine malignant lymphoma. The present study suggests that human health implications of 2,4-D exposure in the home environment should receive further investigation. FULL TEXT

Karthikraj and Kannan, 2019

Karthikraj, R., & Kannan, K.; “Widespread occurrence of glyphosate in urine from pet dogs and cats in New York State, USA;” Science of the Total Environment, 2019, 659, 790-795; DOI: 10.1016/j.scitotenv.2018.12.454.

ABSTRACT:

Glyphosate is one of the most widely used herbicides in the United States, which has led to its ubiquitous occurrence in food and water and regular detection in human urine at concentrations of 1-10mug/L. Data pertaining to health risks arising from the ingestion of glyphosate are limited and are the subject of much debate, which demands the need for more exposure information for this herbicide. Very little is known about glyphosate exposure in pets. In this study, we determined concentrations of glyphosate (Glyp) and its derivatives, methyl glyphosate (Me-Glyp) and aminomethylphosphonic acid (AMPA), in urine collected from 30 dogs and 30 cats from New York State, USA. Glyp was the most predominant compound found in pet urine followed by AMPA and Me-Glyp. The mean urinary concentration of summation operatorGlyp (sum of Glyp+Me-Glyp+AMPA) in cats (mean: 33.8+/-46.7ng/mL) was 2-fold higher than that in dogs (mean: 16.8+/-24.4ng/mL). Cumulative daily intakes (CDI) of Glyp in dogs and cats estimated from the urinary concentrations were, on average, 0.57 and 1.37mug/kgbw/d, respectively. The exposure doses were two to four orders of magnitude below the current acceptable daily intake (ADI) suggested by several international health organizations for humans. FULL TEXT

Back To Top