skip to Main Content

Bibliography Tag: pesticide exposure

Avila-Vazquez et al., 2017

Medardo Avila-Vazquez, Eduardo Maturano, Agustina Etchegoyen, Flavia Silvina Difilippo, Bryan Maclean, “Association between Cancer and Environmental Exposure to Glyphosate,” International Journal of Clinical Medicine, 2017, 8:2, DOI: 10.4236/ijcm.2017.82007

ABSTRACT:

BACKGROUND: Argentina, Brazil, Paraguay and Uruguay farm transgenic seeds glyphosate resistant. Argentina annually utilizes 240,000 tonnes of glyphosate in agriculture. A change in the profile of morbidity and mortality is perceived in agricultural areas; cancer seems to prevail. Monte Maíz is a typical argentine agricultural town with 8000 inhabitants; the Mayor and residents of Monte Maiz requested an environmental health study due to perceived increase in cancer frequencies.

METHODS: An exploratory ecological study was developed to assess the urban environmental contamination and the frequencies and distribution of cancer through an environmental analysis of pollution sources including measurements of pesticides in water, soil and grain dust, and a cross-sectional study of cancer patients that explore associations with different variables.

RESULTS: Glyphosate was detected in soil and grain dust and was found to be at an even higher concentration in the village soil than in the rural area. 650 tonnes are used annually in the region and manipulated inner town. We do not find other relevant sources of pollution. Cancer incidence, prevalence, and mortality are between two and three times higher than the reference values (Globocan 2012, WHO) for the entire nation (706/100,000 persons vs. 217/100,000; 2123/100,000 persons vs. 883.82/100,000 and 383/100,000 persons vs. 115.13/100,000, respectively).

CONCLUSION: This study detects high glyphosate pollution in association with increased frequencies of cancer in a typical argentine agricultural village, and by design, cannot make claims of causality. Other study designs are required, but if we corroborate the concrescence of high exposure to glyphosate and cancer. FULL TEXT

Avila-Vazquez et al., 2015

Medardo Avila-Vazquez, Agustina Etchegoyen, Eduardo Maturano and Luciana Ruderman, “Cancer and detrimental reproductive effects in an Argentine agricultural community environmentally exposed to glyphosate,” The Journal of Biological Physics and Chemistry, 2015, 15:3, DOI: 10.4024/09VA15A.jbpc.15.03

ABSTRACT:

Argentina utilizes about 200 000 tonnes of glyphosate for its agriculture each year. People living near the fields treated with glyphosate often mention an increase in cancer and reproductive alterations. In Monte Maiz, an agricultural settlement with approximate population 8000, we conducted an environmental test assessing water, soil and particulate material contamination as well as an epidemiological study to detect and locate cases of cancer, abortion and genetic abnormality. The site utilizes annually 650 tonnes of glyphosate applied over an area of 65 000 ha. The glyphosate is concentrated and prepared for dispersal in the settlement. We detected glyphosate in particulate material and grain husks and it was found to be present at an even higher concentration on the ground in the village than in the surrounding rural area. The rate of spontaneous abortion in Monte Maiz is three times higher than the national average and the rate of occurrence of genetic abnormality is about twice the national average. Cancer occurrence is between two and three times the reference values for the entire nation with regard to incidence, prevalence and mortality. Although it is of course impossible to establish direct causality, the indicators that emerge from the correlated variables strongly suggest a public health problem of significant proportions, requiring immediate attention.

 

Gillam, 2018

Carey Gillam, “Weedkiller found in granola and crackers, internal FDA emails show,” The Guardian, April 30, 2018.

SUMMARY:

A Freedom of Information Act request for internal FDA emails shows that recent testing for glyphosate residues in foods has revealed that “FDA has had trouble finding any food that does not carry traces of the pesticide.”  This is the first wide-scale quantification of herbicide residues in foods, and internal emails show that FDA scientists tested many common foods during informal testing to validate the process the agency would use to test official samples.  These samples are not “official” and would not be included in the upcoming residue report.  Some results have been above the legal threshold, such as a sample of corn where glyphosate was detected at 6.5 ppm, well over the legal limit of 5.0 ppm.  The FDA is also expanding residue testing for dicamba and 2.4-D as use of these herbicides is expected to rise in the near future with the introduction of new GE crops that are resistant to these active ingredients.  FULL TEXT

Romano et al., 2011

Romano MA, Romano RM, Santos LD, Wisniewski P, Campos DA, de Souza PB, Viau P, Bernardi MM, Nunes MT, de Oliveira CA, “Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression.,” Archives in Toxicology, 2012, 86:4, DOI: 10.1007/s00204-011-0788-9.

ABSTRACT:

Sexual differentiation in the brain takes place from late gestation to the early postnatal days. This is dependent on the conversion of circulating testosterone into estradiol by the enzyme aromatase. The glyphosate was shown to alter aromatase activity and decrease serum testosterone concentrations. Thus, the aim of this study was to investigate the effect of gestational maternal glyphosate exposure (50 mg/kg, NOAEL for reproductive toxicity) on the reproductive development of male offspring. Sixty-day-old male rat offspring were evaluated for sexual behavior and partner preference; serum testosterone concentrations, estradiol, FSH and LH; the mRNA and protein content of LH and FSH; sperm production and the morphology of the seminiferous epithelium; and the weight of the testes, epididymis and seminal vesicles. The growth, the weight and age at puberty of the animals were also recorded to evaluate the effect of the treatment. The most important findings were increases in sexual partner preference scores and the latency time to the first mount; testosterone and estradiol serum concentrations; the mRNA expression and protein content in the pituitary gland and the serum concentration of LH; sperm production and reserves; and the height of the germinal epithelium of seminiferous tubules. We also observed an early onset of puberty but no effect on the body growth in these animals. These results suggest that maternal exposure to glyphosate disturbed the masculinization process and promoted behavioral changes and histological and endocrine problems in reproductive parameters. These changes associated with the hypersecretion of androgens increased gonadal activity and sperm production.

Bouchard et al., 2011

Bouchard MF, Chevrier J, Harley KG, Kogut K, Vedar M, Calderon N, Trujillo C, Johnson C, Bradman A, Barr DB, Eskenazi B., “Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children.,” Environmental Health Perspectives, 2011, 119:8, DOI: 10.1289/ehp.1003185.

ABSTRACT:
CONTEXT: Organophosphate (OP) pesticides are neurotoxic at high doses. Few studies have examined whether chronic exposure at lower levels could adversely affect children’s cognitive development.

OBJECTIVE: We examined associations between prenatal and postnatal exposure to OP pesticides and cognitive abilities in school-age children.

METHODS: We conducted a birth cohort study (Center for the Health Assessment of Mothers and Children of Salinas study) among predominantly Latino farmworker families from an agricultural community in California. We assessed exposure to OP pesticides by measuring dialkyl phosphate (DAP) metabolites in urine collected during pregnancy and from children at 6 months and 1, 2, 3.5, and 5 years of age. We administered the Wechsler Intelligence Scale for Children, 4th edition, to 329 children 7 years of age. Analyses were adjusted for maternal education and intelligence, Home Observation for Measurement of the Environment score, and language of cognitive assessment.

RESULTS: Urinary DAP concentrations measured during the first and second half of pregnancy had similar relations to cognitive scores, so we used the average of concentrations measured during pregnancy in further analyses. Averaged maternal DAP concentrations were associated with poorer scores for Working Memory, Processing Speed, Verbal Comprehension, Perceptual Reasoning, and Full-Scale intelligence quotient (IQ). Children in the highest quintile of maternal DAP concentrations had an average deficit of 7.0 IQ points compared with those in the lowest quintile. However, children’s urinary DAP concentrations were not consistently associated with cognitive scores.

CONCLUSIONS: Prenatal but not postnatal urinary DAP concentrations were associated with poorer intellectual development in 7-year-old children. Maternal urinary DAP concentrations in the present study were higher but nonetheless within the range of levels measured in the general U.S. population. FULL TEXT

Mostafalou and Abdollahi, 2017

Sara Mostafalou and Mohammad Abdollahi, “Pesticides: an update of human exposure and toxicity,” Archives of Toxicology, February 2017, 91:2, DOI: 10.1007/s00204-016-1849-x.

ABSTRACT:

Pesticides are a family of compounds which have brought many benefits to mankind in the agricultural, industrial, and health areas, but their toxicities in both humans and animals have always been a concern. Regardless of acute poisonings which are common for some classes of pesticides like organophosphoruses, the association of chronic and sub-lethal exposure to pesticides with a prevalence of some persistent diseases is going to be a phenomenon to which global attention has been attracted. In this review, incidence of various malignant, neurodegenerative, respiratory, reproductive, developmental, and metabolic diseases in relation to different routes of human exposure to pesticides such as occupational, environmental, residential, parental, maternal, and paternal has been systematically criticized in different categories of pesticide toxicities like carcinogenicity, neurotoxicity, pulmonotoxicity, reproductive toxicity, developmental toxicity, and metabolic toxicity. A huge body of evidence exists on the possible role of pesticide exposures in the elevated incidence of human diseases such as cancers, Alzheimer, Parkinson, amyotrophic lateral sclerosis, asthma, bronchitis, infertility, birth defects, attention deficit hyperactivity disorder, autism, diabetes, and obesity. Most of the disorders are induced by insecticides and herbicides most notably organophosphorus, organochlorines, phenoxyacetic acids, and triazine compounds.

Islam et al., 2018

Faisal Islam, Jian Wang, Muhammad A. Farooq, Muhammad S.S. Khan, Ling Xu, Jinwen Zhu, Min Zhao, Stéphane Muños, Qing X. Li, Weijun Zhou, “Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems,” Environment International, 2018, 111, DOI: 10.1016/j.envint.2017.10.020.

ABSRACT: The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is applied directly to aquatic and conventional farming systems to control weeds, and is among the most widely distributed pollutants in the environment. Non-target organisms are exposed to 2,4-D via several ways, which could produce toxic effects depending on the dose, frequency of exposure, and the host factors that influence susceptibility and sensitivity. An increasing number of experimental evidences have shown concerns about its presence/detection in the environment, because several investigations have pointed out its potential lethal effects on non-target organisms. In this review, we critically evaluated the environmental fate and behavior of 2,4-D along with its eco-toxicological effects on aquatic, plants and human life to provide concise assessment in the light of recently published reports. The findings demonstrate that 2,4-D is present in a low concentration in surface water of regions where its usage is high. The highest concentrations of 2,4-D were detected in soil, air and surface water surrounded by crop fields, which suggest that mitigation strategies must be implanted locally to prevent the entry of 2,4-D into the environment. A general public may have frequent exposure to 2,4-D due to its wide applications at home lawns and public parks, etc. Various in vivo and in vitro investigations suggest that several species (or their organs) at different trophic levels are extremely sensitive to the 2,4-D exposure, which may explain variation in outcomes of reported investigations. However, implications for the prenatal exposure to 2,4-D remain unknown because 2,4-D-induced toxicity thresholds in organism have only been derived from juveniles or adults. In near future, introduction of 2,4-D resistant crops will increase its use in agriculture, which may cause relatively high and potentially unsafe residue levels in the environment. The recent findings indicate the urgent need to further explore fate, accumulation and its continuous low level exposure impacts on the environment to generate reliable database which is key in drafting new regulation and policies to protect the population from further exposure.

Eskenazi et al., 2004

Brenda Eskenazi, Kim Harley, Asa Bradman, Erin Weltzien, Nicholas P. Jewell, Dana B. Barr, Clement E. Furlong, and Nina T. Holland, “Association of in Utero Organophosphate Pesticide Exposure and Fetal Growth and Length of Gestation in an Agricultural Population,” Environmental Health Perspecitives, 112:10, 2004, DOI: 10.1289/ehp.6789

ABSTRACT:

Although pesticide use is widespread, little is known about potential adverse health effects of in utero exposure. We investigated the effects of  organophosphate pesticide exposure during pregnancy on fetal growth and gestational duration in a cohort of low-income, Latina women living in an agricultural community in the Salinas Valley, California. We measured nonspecific metabolites of organophosphate pesticides (dimethyl and diethyl phosphates) and metabolites specific to malathion (malathion dicarboxylic acid), chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridinyl) phosphoro-thioate], and parathion (4-nitrophenol) in maternal urine collected twice during pregnancy. We also measured levels of cholinesterase in whole blood and butyryl cholinesterase in plasma in maternal and umbilical cord blood. We failed to demonstrate an adverse relationship between fetal growth and any measure of in utero organophosphate pesticide exposure. In fact, we found increases in body length and head circumference associated with some exposure measures.
However, we did find decreases in gestational duration associated with two measures of in utero pesticide exposure: urinary dimethyl phosphate metabolites [βadjusted = –0.41 weeks per log10 unit increase; 95% confidence interval (CI), –0.75––0.02; p = 0.02], which reflect exposure to dimethyl organophosphate compounds such as malathion, and umbilical cord cholinesterase (βadjusted = 0.34 weeks per unit increase; 95% CI, 0.13–0.55; p = 0.001). Shortened gestational duration was most clearly related to increasing exposure levels in the latter part of pregnancy. These associations with gestational age may be biologically plausible given that organophosphate pesticides depress cholinesterase and acetylcholine stimulates contraction of the uterus. However, despite these observed associations, the rate of preterm delivery in this population (6.4%) was lower than in a U.S. reference population.   FULL TEXT

Goldman et al., 2004

Goldman L1, Eskenazi B, Bradman A, Jewell NP., “Risk behaviors for pesticide exposure among pregnant women living in farmworker households in Salinas, California,”  American Journal of Industrial Medicine, 45:6, 2004, DOI: 10.1002/ajim.20012

ABSTRACT:

BACKGROUND: Farmworkers and their families are at risk for pesticide exposure, however, little is known about behaviors that increase their risk. We determined the frequency of risky behaviors among pregnant farmworkers and characterized those at greatest risk.

METHODS: Participants included 153 pregnant farmworkers and 248 pregnant non-farmworkers who resided with farmworkers from the CHAMACOS (Center for the Health Assessment of Mothers and Children of Salinas) study. We examined risky behaviors relating to handwashing, bathing, protective clothing, house cleaning, laundering of work clothes, wearing of work clothes and shoes into the home, and eating produce from the fields.

RESULTS: Between 25 and 60% of women demonstrated risky behavior on each item. Practices of households with pregnant farmworkers and non-farmworkers did not differ. Women who lived in the United States longer, and in crowded households demonstrated the most risky behavior overall.

CONCLUSIONS: Pregnant farmworkers and those living with farmworkers need to be educated to reduce potential take-home pesticide exposure.

Brändli et al., 2012

Dirk Brändli and Sandra Reinacher, “Herbicides found in Human Urine,” Ithaka Journal, 1/2012, 2012

SUMMARY:

Glyphosate is the main active substance used in most commercial herbicides. It poisons not only plants, but also animals and humans. When testing for glyphosate contamination in an urban population, a German university found significant contamination in all urine samples with levels 5 to 20 times above the legal limit for drinking water.  Glyphosate background info, health risks, and reasons for contamination are discussed.  FULL TEXT

Back To Top