Bibliography Tag: policy and politics

Agrochemicals, Environmental Racism, and Environmental Justice in U.S. History

Porter, M. Jayson; Agrochemicals, Environmental Racism, and Environmental Justice in U.S. History. Northwestern University, The Organic Center (2022).


In theory, pesticides should have the toxicity to deter pests without harming plants or people. However, a closer look at pesticide history in the United States reveals an enduring legacy of environmental racism against communities of color and their collective action for environmental justice. Humans have harnessed the toxicity of chemicals to kill agricultural insects for millennia. However, the rapid proliferation of modern agrochemicals between 1870-1914 increased how much agriculture itself could hurt places and people. The burden of protecting people and places has always fallen on communities rather than governments and institutions.


Rohr, 2021

Rohr, J. R.; “The Atrazine Saga and its Importance to the Future of Toxicology, Science, and Environmental and Human Health;” Environmental Toxicology and Chemistry, 2021, 40(6), 1544-1558; DOI: 10.1002/etc.5037.


The herbicide atrazine is one of the most commonly used, well studied, and controversial pesticides on the planet. Much of the controversy involves the effects of atrazine on wildlife, particularly amphibians, and the ethically questionable decision making of members of industry, government, the legal system, and institutions of higher education, in most cases in an effort to “bend science,” defined as manipulating research to advance economic, political, or ideological ends. In this Critical Perspective I provide a timeline of the most salient events in the history of the atrazine saga, which includes a multimillion-dollar smear campaign, lawsuits, investigative reporting, accusation of impropriety against the US Environmental Protection Agency, and a multibillion-dollar transaction. I argue that the atrazine controversy must be more than just a true story of cover-ups, bias, and vengeance. It must be used as an example of how manufacturing uncertainty and bending science can be exploited to delay undesired regulatory decisions and how greed and conflicts of interest—situations where personal or organizational considerations have compromised or biased professional judgment and objectivity—can affect environmental and public health and erode trust in the discipline of toxicology, science in general, and the honorable functioning of societies. Most importantly, I offer several recommendations that should help to 1) prevent the history of atrazine from repeating itself, 2) enhance the credibility and integrity of science, and 3) enrich human and environmental health. FULL TEXT


Aylward et al., 2010

Aylward, Lesa L., Morgan, Marsha K., Arbuckle, Tye E., Barr, Dana B., Burns, Carol J., Alexander, Bruce H., & Hays, Sean M.; “Biomonitoring data for 2,4-dichlorophenoxyacetic acid in the United States and Canada: Interpretation in a public health risk assessment context using biomonitoring equivalents;” Environmental Health Perspectives, 2010, 118, 177-181; DOI: 10.1289/ehp.0900970.


BACKGROUND: Several extensive studies of exposure to 2,4-dichlorophenoxyacetic acid (2,4-D) using urinary concentrations in samples from the general population, farm applicators, and farm family members are now available. Reference doses (RfDs) exist for 2,4-D, and Biomonitoring Equivalents (BEs; concentrations in urine or plasma that are consistent with those RfDs) for 2,4-D have recently been derived and published.

OBJECTIVE: We reviewed the available biomonitoring data for 2,4-D from the United States and Canada and compared them with BE values to draw conclusions regarding the margin of safety for 2,4-D exposures within each population group.

DATA SOURCES: Data on urinary 2,4-D excretion in general and target populations from recent published studies are tabulated and the derivation of BE values for 2,4-D summarized.

DATA SYNTHESIS: The biomonitoring data indicate margins of safety (ratio of BE value to biomarker concentration) of approximately 200 at the central tendency and 50 at the extremes in the general population. Median exposures for applicators and their family members during periods of use appear to be well within acute exposure guidance values.

CONCLUSIONS: Biomonitoring data from these studies indicate that current exposures to 2,4-D are below applicable exposure guidance values. This review demonstrates the value of biomonitoring data in assessing population exposures in the context of existing risk assessments using the BE approach. Risk managers can use this approach to integrate the available biomonitoring data into an overall assessment of current risk management practices for 2,4-D.



Benbrook et al., 2021a

Benbrook, Charles, Perry, Melissa J., Belpoggi, Fiorella, Landrigan, Philip J., Perro, Michelle, Mandrioli, Daniele, Antoniou, Michael N., Winchester, Paul, & Mesnage, Robin; “Commentary: Novel strategies and new tools to curtail the health effects of pesticides;” Environmental Health, 2021, 20(1); DOI: 10.1186/s12940-021-00773-4.


BACKGROUND: Flaws in the science supporting pesticide risk assessment and regulation stand in the way of progress in mitigating the human health impacts of pesticides. Critical problems include the scope of regulatory testing protocols, the near-total focus on pure active ingredients rather than formulated products, lack of publicly accessible information on co-formulants, excessive reliance on industry-supported studies coupled with reticence to incorporate published results in the risk assessment process, and failure to take advantage of new scientific opportunities and advances, e.g. biomonitoring and “omics” technologies.
RECOMMENDED ACTIONS: Problems in pesticide risk assessment are identified and linked to study design, data, and methodological shortcomings. Steps and strategies are presented that have potential to deepen scientific knowledge of pesticide toxicity, exposures, and risks.
We propose four solutions:
(1) End near-sole reliance in regulatory decision-making on industry-supported studies by supporting and relying more heavily on independent science, especially for core toxicology studies. The cost of conducting core toxicology studies at labs not affiliated with or funded directly by pesticide registrants should be covered via fees paid by manufacturers to public agencies.
(2) Regulators should place more weight on mechanistic data and low-dose studies within the range of contemporary exposures.
(3) Regulators, public health agencies, and funders should increase the share of exposure-assessment resources that produce direct measures of concentrations in bodily fluids and tissues. Human biomonitoring is vital in order to quickly identify rising exposures among vulnerable populations including applicators, pregnant women, and children.
(4) Scientific tools across disciplines can accelerate progress in risk assessments if integrated more effectively. New genetic and metabolomic markers of adverse health impacts and heritable epigenetic impacts are emerging and should be included more routinely in risk assessment to effectively prevent disease.
CONCLUSIONS: Preventing adverse public health outcomes triggered or made worse by exposure to pesticides will require changes in policy and risk assessment procedures, more science free of industry influence, and innovative strategies that blend traditional methods with new tools and mechanistic insights.


Messina and Goodis, 2020

Messina, Edward & Goodis, Mike; “Overview of EPA’s Pesticide Program”; Presented at the Farm, Ranch, and Rural Communities Committee Meeting; November 13, 2020. Environmental Protection Agency, 2020.


  • Background
  • Office of Pesticide Programs Structure and Responsibilities
  • Pesticide Legislation
  • Pesticide Registration and Registration Review Process
  • Risk Assessment, Risk Characterization, and Risk Management
  • Public Involvement
  • Collaboration with Domestic & International Partners
  • Updates on EPA Issues


Schipanski et al., 2016

Schipanski, Meagan E., MacDonald, Graham K., Rosenzweig, Steven, Chappell, M. Jahi, Bennett, Elena M., Kerr, Rachel Bezner, Blesh, Jennifer, Crews, Timothy, Drinkwater, Laurie, Lundgren, Jonathan G., & Schnarr, Cassandra; “Realizing Resilient Food Systems;” BioScience, 2016, 66(7), 600-610; DOI: 10.1093/biosci/biw052.


Food systems are under increasing pressure to produce sufficient food for the global population, decrease the environmental impacts of production, and buffer against complex global change. Food security also remains elusive for many populations worldwide. Greater emphasis on food system resilience could reduce these vulnerabilities. We outline integrated strategies that together could foster food system resilience across scales, including (a) integrating gender equity and social justice into food security research and initiatives, (b) increasing the use of ecological processes rather than external inputs for crop production, (c) fostering regionalized food distribution networks and waste reduction, and (d) linking human nutrition and agricultural production policies. Enhancing social–ecological links and fostering adaptive capacity are essential to cope with short-term volatility and longer-term global change pressures. Finally, we highlight regional case studies that have enhanced food system resilience for vulnerable populations. Efforts in these areas could have dramatic impacts on global food system resilience. FULL TEXT

Sheppard et al., 2020

Sheppard, L., McGrew, S., & Fenske, R. A.; “Flawed analysis of an intentional human dosing study and its impact on chlorpyrifos risk assessments;” Environment International, 2020, 143, 105905; DOI: 10.1016/j.envint.2020.105905.


In March 1972, Frederick Coulston and colleagues at the Albany Medical College reported results of an intentional chlorpyrifos dosing study to the study’s sponsor, Dow Chemical Company. Their report concluded that 0.03 mg/kg-day was the chronic no-observed-adverse-effect-level (NOAEL) for chlorpyrifos in humans. We demonstrate here that a proper analysis by the original statistical method should have found a lower NOAEL (0.014 mg/kg-day), and that use of statistical methods first available in 1982 would have shown that even the lowest dose in the study had a significant treatment effect. The original analysis, conducted by Dow-employed statisticians, did not undergo formal peer review; nevertheless, EPA cited the Coulston study as credible research and kept its reported NOAEL as a point of departure for risk assessments throughout much of the 1980’s and 1990’s. During that period, EPA allowed chlorpyrifos to be registered for multiple residential uses that were later cancelled to reduce potential health impacts to children and infants. Had appropriate analyses been employed in the evaluation of this study, it is likely that many of those registered uses of chlorpyrifos would not have been authorized by EPA. This work demonstrates that reliance by pesticide regulators on research results that have not been properly peer-reviewed may needlessly endanger the public. FULL TEXT

Qu et al., 2021

Qu, R. Y., He, B., Yang, J. F., Lin, H. Y., Yang, W. C., Wu, Q. Y., Li, Q. X., & Yang, G. F.; “Where are the New Herbicides?;” Pest Management Science, 2021; DOI: 10.1002/ps.6285.


Herbicide resistance has become one of the foremost problems in crop production worldwide. New herbicides are required to manage weeds that have evolved resistance to the existing herbicides. However, relatively few herbicides with new modes of action (MOAs) have been discovered in the past two decades. Therefore, the discovery of new herbicides (i.e., new chemical classes or MOAs) remains a primary but ongoing strategy to overcome herbicide resistance and ensure crop production. In this mini-review, starting with the inherent characteristics of the target proteins and the inhibitor structures, we propose two strategies for the rational design of new herbicides and one computational method for the risk evaluation of target mutation-conferred herbicide resistance. The information presented here may improve the utilization of known targets and inspire the discovery of herbicides with new targets. We believe that these strategies may trigger the sustainable development of herbicides in the future.