skip to Main Content

Benbrook et al., 2021a

Benbrook, Charles, Perry, Melissa J., Belpoggi, Fiorella, Landrigan, Philip J., Perro, Michelle, Mandrioli, Daniele, Antoniou, Michael N., Winchester, Paul, & Mesnage, Robin; “Commentary: Novel strategies and new tools to curtail the health effects of pesticides;” Environmental Health, 2021, 20(1); DOI: 10.1186/s12940-021-00773-4.

ABSTRACT:

BACKGROUND: Flaws in the science supporting pesticide risk assessment and regulation stand in the way of progress in mitigating the human health impacts of pesticides. Critical problems include the scope of regulatory testing protocols, the near-total focus on pure active ingredients rather than formulated products, lack of publicly accessible information on co-formulants, excessive reliance on industry-supported studies coupled with reticence to incorporate published results in the risk assessment process, and failure to take advantage of new scientific opportunities and advances, e.g. biomonitoring and “omics” technologies.
RECOMMENDED ACTIONS: Problems in pesticide risk assessment are identified and linked to study design, data, and methodological shortcomings. Steps and strategies are presented that have potential to deepen scientific knowledge of pesticide toxicity, exposures, and risks.
We propose four solutions:
(1) End near-sole reliance in regulatory decision-making on industry-supported studies by supporting and relying more heavily on independent science, especially for core toxicology studies. The cost of conducting core toxicology studies at labs not affiliated with or funded directly by pesticide registrants should be covered via fees paid by manufacturers to public agencies.
(2) Regulators should place more weight on mechanistic data and low-dose studies within the range of contemporary exposures.
(3) Regulators, public health agencies, and funders should increase the share of exposure-assessment resources that produce direct measures of concentrations in bodily fluids and tissues. Human biomonitoring is vital in order to quickly identify rising exposures among vulnerable populations including applicators, pregnant women, and children.
(4) Scientific tools across disciplines can accelerate progress in risk assessments if integrated more effectively. New genetic and metabolomic markers of adverse health impacts and heritable epigenetic impacts are emerging and should be included more routinely in risk assessment to effectively prevent disease.
CONCLUSIONS: Preventing adverse public health outcomes triggered or made worse by exposure to pesticides will require changes in policy and risk assessment procedures, more science free of industry influence, and innovative strategies that blend traditional methods with new tools and mechanistic insights.

FULL TEXT


Back To Top