skip to Main Content

Bibliography Tag: resistant weeds

Erickson and Bomgardner, 2015

Britt E. Erickson, Melody M. Bomgardner, “Resistant weeds, fears of health effects drive market for alternatives to widely used herbicide,” Chemical and Engineering News, 2015, 93:37.


Not Available


Evans et al., 2015

Jeffrey A Evans, Patrick J Tranel, Aaron G Hager, Brian Schutte, Chenxi Wu,  Laura A Chatham, and Adam S Davis,  “Managing the evolution of herbicide resistance,” 2015, Pest Management Science, 72, DOI 10.1002/ps.4009.


BACKGROUND: Understanding and managing the evolutionary responses of pests and pathogens to control efforts is essential to human health and survival. Herbicide-resistant (HR) weeds undermine agricultural sustainability, productivity and profitability, yet the epidemiology of resistance evolution – particularly at landscape scales – is poorly understood. We studied glyphosate resistance in a major agricultural weed, Amaranthus tuberculatus (common waterhemp), using landscape, weed and management data from 105 central Illinois grain farms, including over 500 site-years of herbicide application records.

RESULTS: Glyphosate-resistant (GR) A. tuberculatus occurrence was greatest in fields with frequent glyphosate applications, high annual rates of herbicide mechanism of action (MOA) turnover and few MOAs/field/year. Combining herbicide MOAs at the time of application by herbicide mixing reduced the likelihood of GR A. tuberculatus.

CONCLUSIONS: These findings illustrate the importance of examining large-scale evolutionary processes at relevant spatial scales. Although measures such as herbicide mixing may delay GR or other HR weed traits, they are unlikely to prevent them. Long-term weed management will require truly diversified management practices that minimize selection for herbicide resistance traits.  FULL TEXT

Harker et al., 2012

K. Neil Harker, John T. O’Donovan, Robert E. Blackshaw, Hugh J. Beckie, C. Mallory-Smith, and Bruce D. Maxwell, “Our View,” Weed Science, 2012, 60, DOI: 10.1614/WS-D-11-00177.1.

Perhaps the incidence and impact of glyphosate-resistant weed species are now great enough that real solutions to glyphosate resistance can be discussed without much backlash. It is clear to most weed scientists who are involved in herbicide research, and even those who are not, that the best way to reduce selection pressure for herbicide resistance is to minimize herbicide use. However, the ‘‘solutions’’ that have emerged in most recent meetings on herbicide resistance have usually involved more herbicide use—herbicide rotation, tank-mixtures, PRE- followed by POST-herbicides, ‘‘right-rates,’’ etc. To an unbiased observer, it would appear that many weed emperors are wearing no clothes. Are we as a weed science discipline choosing to ignore true integrated solutions to the herbicide resistance problem? FULL TEXT

Gaines et al., 2010

Todd A. Gaines, Wenli Zhang, Dafu Wang, Bekir Bukun, Stephen T. Chisholm, Dale L. Shaner, Scott J. Nissen, William L. Patzoldt , Patrick J. Tranel , A. Stanley Culpepper , Timothy L. Grey , Theodore M. Webster , William K. Vencill, R. Douglas Sammons, Jiming Jiang, Christopher Prestoni, Jan E. Leacha, and Philip Westraa, “Gene amplification confers glyphosate resistance in Amaranthus palmeri,” PNAS, 2010,  107:3, DOI: 10.1073/PNAS/PNAS.0906649107.


The herbicide glyphosate became widely used in the United States and other parts of the world after the commercialization of glyphosate-resistant crops. These crops have constitutive overexpression of a glyphosate-insensitive form of the herbicide target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Increased use of glyphosate over multiple years imposes selective genetic pressure on weed populations. We investigated recently discovered glyphosate-resistant Amaranthus palmeri populations from Georgia, in comparison with normally sensitive populations. EPSPS enzyme activity from resistant and susceptible plants was equally inhibited by glyphosate, which led us to use quantitative PCR to measure relative copy numbers of the EPSPS gene. Genomes of resistant plants contained from 5-fold to more than 160-fold more copies of the EPSPS gene than did genomes of susceptible plants. Quantitative RT-PCR on cDNA revealed that EPSPS expression was positively correlated with genomic EPSPS relative copy number. Immunoblot analyses showed that increased EPSPS protein level also correlated with EPSPS genomic copy number. EPSPS gene amplification was heritable, correlated with resistance in pseudo-F2 populations, and is proposed to be the molecular basis of glyphosate resistance. FISH revealed that EPSPS genes were present on every chromosome and, therefore, gene amplification was likely not caused by unequal chromosome crossing over. This occurrence of gene amplification as an herbicide resistance mechanism in a naturally occurring weed population is particularly significant because it could threaten the sustainable use of glyphosate-resistant crop technology.  FULL TEXT

Dill, 2005

Gerald M Dill, “Glyphosate-resistant crops: history, status and future,” Pest Management Science, 2005, 61, DOI: 10.1002/PS.1008.


The commercial launch of glyphosate-resistant soybeans in 1996 signaled the beginning of a new era in weed management in row crops. Today, over 80% of the soybeans grown in the USA are glyphosate resistant. Since that time, many crops have been transformed that have allowed crop applications of many classes of herbicide chemistries. Crops currently under production include maize, soybean, cotton and canola. Transformation technology and selection methods have improved and the rate of development as well as the breadth of crops being considered as commercial targets has increased. On the basis of recent adoption rates by growers around the world, it appears that glyphosate-resistant crops will continue to grow in number and in hectares planted. However, global public acceptance of biotechnology-derived products will continue to impact the rate of adoption of this and other new innovations derived from transformation technology.  FULL TEXT

Binimelis et al., 2009

Rosa Binimelis, Walter Pengue, Iliana Monterroso, ‘‘’Transgenic treadmill’: Responses to the emergence and spread of glyphosate-resistant johnsongrass in Argentina,”  Geoforum, 2009, 40:4.


The broad-spectrum herbicide glyphosate has become the largest-selling crop-protection product worldwide. The increased use of glyphosate is associated with the appearance of a growing number of tolerant or resistant weeds, with socio-environmental consequences apart from the loss of productivity. In 2002, a glyphosate-resistant biotype of johnsongrass (Sorghum halepense (L.)) appeared in Argentina and now covers at least 10,000 ha. This paper analyzes the driving forces behind the emergence and spread of this weed and also examines management responses and their implications.

Preventive strategies against glyphosate-resistant johnsongrass fail because of the institutional setting. Reactive measures, however, transfer the risks to the society and the environment through the introduction of novel genetically modified crops that allow the use of yet more herbicide. This in turn reinforces the emergence of herbicide-resistant weeds, constituting a new phenomenon of intensification, the “transgenic treadmill”.  FULL TEXT

Mortensen et al., 2012

David A. Mortensen, J. Franklin Egan, Bruce D. Maxwell, Matthew R. Ryan, Richard G. Smith, “Navigating a Critical Juncture for Sustainable Weed Management,” BioScience, 2012, 62:1.


Agricultural weed management has become entrenched in a single tactic—herbicide-resistant crops—and needs greater emphasis on integrated practices that are sustainable over the long term. In response to the outbreak of glyphosate-resistant weeds, the seed and agrichemical industries are developing crops that are genetically modified to have combined resistance to glyphosate and synthetic auxin herbicides. This technology will allow these herbicides to be used over vastly expanded areas and will likely create three interrelated challenges for sustainable weed management. First, crops with stacked herbicide resistance are likely to increase the severity of resistant weeds. Second, these crops will facilitate a significant increase in herbicide use, with potential negative consequences for environmental quality. Finally, the short-term fix provided by the new traits will encourage continued neglect of public research and extension in integrated weed management. Here, we discuss the risks to sustainable agriculture from the new resistant crops and present alternatives for research and policy.  FULL TEXT

Back To Top