skip to Main Content

Bibliography Tag: roundup

Benachour et al., 2007

N. Benachour, H. Sipahutar, S. Moslemi, C. Gasnier, C. Travert, G. E. Séralini, “Time- and Dose-Dependent Effects of Roundup on Human Embryonic and Placental Cells,” Archives of Environmental Contamination and Toxicology, 53:1, July 2007, DOI:


Roundup® is the major herbicide used worldwide, in particular on genetically modified plants that have been designed to tolerate it. We have tested the toxicity and endocrine disruption potential of Roundup (Bioforce®) on human embryonic 293 and placental-derived JEG3 cells, but also on normal human placenta and equine testis. The cell lines have proven to be suitable to estimate hormonal activity and toxicity of pollutants. The median lethal dose (LD50) of Roundup with embryonic cells is 0.3% within 1 h in serum-free medium, and it decreases to reach 0.06% (containing among other compounds 1.27 mM glyphosate) after 72 h in the presence of serum. In these conditions, the embryonic cells appear to be 2–4 times more sensitive than the placental ones. In all instances, Roundup (generally used in agriculture at 1–2%, i.e., with 21–42 mM glyphosate) is more efficient than its active ingredient, glyphosate, suggesting a synergistic effect provoked by the adjuvants present in Roundup. We demonstrated that serum-free cultures, even on a short-term basis (1 h), reveal the xenobiotic impacts that are visible 1–2 days later in serum. We also document at lower non-overtly toxic doses, from 0.01% (with 210 μM glyphosate) in 24 h, that Roundup is an aromatase disruptor. The direct inhibition is temperature-dependent and is confirmed in different tissues and species (cell lines from placenta or embryonic kidney, equine testicular, or human fresh placental extracts). Furthermore, glyphosate acts directly as a partial inactivator on microsomal aromatase, independently of its acidity, and in a dose-dependent manner. The cytotoxic, and potentially endocrine-disrupting effects of Roundup are thus amplified with time. Taken together, these data suggest that Roundup exposure may affect human reproduction and fetal development in case of contamination. Chemical mixtures in formulations appear to be underestimated regarding their toxic or hormonal impact. FULL TEXT


Dallegrave et al., 2003

Eliane Dallegrave, Fabiana DiGiorgio Mantese, Ricardo Soares Coelho, Janaı´na Drawans Pereira, Paulo Roberto Dalsenter, Augusto Langeloh, “The teratogenic potential of the herbicide glyphosate-Roundup in Wistar rats,” Toxicology Letters, 142, 2003, DOI: 10.1016/S0378-4274(02)00483-6.


The aim of this study was to assess the teratogenicity of the herbicide glyphosate-Roundup† (as commercialized in Brazil) to Wistar rats. Dams were treated orally with water or 500, 750 or 1000 mg/kg glyphosate from day 6 to 15 of pregnancy. Cesarean sections were performed on day 21 of pregnancy, and number of corpora lutea, implantation sites, living and dead fetuses, and resorptions were recorded. Weight and gender of the fetuses were determined, and fetuses
were examined for external malformations and skeletal alterations. The organs of the dams were removed and weighed. Results showed a 50% mortality rate for dams treated with 1000 mg/kg glyphosate. Skeletal alterations were observed in 15.4, 33.1, 42.0 and 57.3% of fetuses from the control, 500, 750 and 1000 mg/kg glyphosate groups, respectively. We may conclude that glyphosate-Roundup† is toxic to the dams and induces developmental retardation of the fetal
skeleton.  FULL TEXT

Oliveira et. al, 2016

Regis de Campos Oliveira, Lucas Kortz Vilas Boas, and Ciro Cesar Zanini Branco, “Assessment of the potential toxicity of glyphosate-based herbicides on the photosynthesis of Nitella microcarpa var. wrightii (Charophyceae),” Phycologia, 2016, 55:5,  577-584, DOI:  10.2216/16-12.1.


Although macroalgae are considered one of the most important primary producers in streams, to our knowledge there has been no research on the effects of herbicides on these organisms. Such studies are crucial for improving our understanding of the impact of these substances on stream ecology. In this study, we assess the effects of technical-grade glyphosate, Roundup and aminomethylphosphonic acid (AMPA; the main degradation product of glyphosate) on the photosynthetic rate, dark respiration rate and chlorophyll a content of Nitella microcarpa var. wrightii, a green algae found worldwide. Three concentrations of technical-grade glyphosate and Roundup were tested (0.28, 3.5 and 6 mg l1), while for AMPA only one concentration was evaluated (0.03 mg l1). Our results indicate that glyphosate has a stronger inhibitory effect on photosynthetic rate when applied in association with a surfactant (Roundup). These effects are related both to the concentration of the active ingredient and to exposure time. On the other hand, treatment with AMPA had a stimulatory effect on the photosynthetic rate, which may be associated with an increased supply of phosphorus available to the algae from the AMPA degradation process. From an ecological perspective, our results show that the ecological distribution of N. microcarpa var. wrightii, in terms of both spatial and temporal scales, can be affected by glyphosate-based herbicides in streams.  FULL TEXT

Cuhra et. al, 2014

M. Cuhra, T. Traavik, and T. Bohn, “Life cycle fitness differences in Daphnia magna fed Roundup-Ready soybean or convetional soybean or organic soybean,” Aquaculture Nutrition, 2014, DOI: 10.1111/ani.12199.


A lifelong feeding study with soybean from different production systems was carried out in the crustacean Daphnia magna (water flea), an acknowledged model organism for ecotoxicological studies. Experimental diets were prepared with soybean meal from different agriculture production systems: (i) genetically modified Roundup-Ready soy (Glyphosate-Tolerant), (ii) conventional soy and (iii) soy from organic agriculture (agriculture with neither synthetic pesticides nor synthetic fertilizers). Overall, feed produced from organic soybeans resulted in the highest fitness (higher survival, better growth and fecundity) in the model organism. Animals fed Roundup-Ready soybean consistently performed less well compared to animals fed either conventional or organic soybeans. We conclude that accumulation of herbicide residues in Roundup-Ready soy and related nutritional differences between the soy types may have caused the observed fitness differences. The results accentuate the need for further research clarifying qualitative aspects, including potential large-scale consequences for food and feed quality, of this dominant crop.  FULL TEXT

Relyea, 2011

Rick A. Relyea, “Amphibians Are Not Ready for Roundup®,” in Wildlife Ecotoxicology: Forensic Approaches, J.E. Elliott et al. (eds.), 2011, DOI 10.1007/978-0-387-89432-4_9.


The herbicide glyphosate, sold under a variety of commercial names including Roundup® and Vision® , has long been viewed as an environmentally friendly  herbicide. In the 1990s, however, after nearly 20 years of use, the first tests were conducted on the herbicide’s effects on amphibians in Australia. The researchers found that the herbicide was moderately toxic to Australian amphibians. The leading manufacturer of glyphosate-based herbicides, Monsanto, declared that the researchers were wrong. Nearly 10 years later, my research group began examining the effects of the herbicides on North American amphibians. Based on an extensive series of experiments, we demonstrated that glyphosate-based herbicides can be highly toxic to larval amphibians. Monsanto declared that we were also wrong. These experiments have formed the basis of a spirited debate between independent, academic researchers, and scientists that either work as consultants for Monsanto or have a vested interest in promoting the application of the herbicide to control undesirable plants in forests and agriculture. The debate also moved into unexpected arenas, including the use of glyphosate-based herbicides in the Colombian drug war in South America where a version of Roundup is being used to kill illegal coca plantations. In 2008, the US EPA completed a risk assessment for the effects of glyphosate-based herbicides on the endangered California red-legged frog (Rana aurora draytonii) and concluded that it could adversely affect the long-termpersistence of the species. More recent data from Colombia have confirmed that the herbicides not only pose a risk to tadpoles in shallow wetlands, but that typical applications rates also can kill up to 30% of adult frogs. As one reflects over the past decade, it becomes clear that our understanding of the possible effects of glyphosatebased herbicides on amphibians has moved from a position of knowing very little and assuming no harm to a position of more precise understanding of which concentrations and conditions pose a serious risk. FULL TEXT

de Brito Rodrigues et al., 2017

Laís de Brito Rodrigues, Rhaul de Oliveira , Flávia Renata Abe, Lara Barroso Brito, Diego Sousa Moura, Marize Campos Valadares, Cesar Koppe Grisolia, Danielle Palma de Oliveria, and Gisele Augusto Rodrigues de Oliveira, “Ecotoxicological Assessment of Glyphosate-Based Herbicides,” Environmental Toxicology and Chemistry, 2017, 36:7, DOI: 10.1002/etc.3580.


Glyphosate-based herbicides are the most commonly used worldwide because they are effective and relatively nontoxic to nontarget species. Unlimited and uncontrolled use of such pesticides can have serious consequences for human health and ecological balance. The present study evaluated the acute toxicity and genotoxicity of 2 glyphosate-based formulations, Roundup Original (Roundup) and Glyphosate AKB 480 (AKB), on different organisms: cucumber (Cucumis sativus), lettuce (Lactuca sativa), and tomato (Lycopersicon esculentum) seeds, and microcrustacean Artemia salina and zebrafish (Danio rerio) early life stages. For the germination endpoint, only L. esculentum presented significant sensitivity to AKB and L. sativa to Roundup, whereas both formulations significantly inhibited the root growth of all species tested. Both AKB and Roundup induced significant toxicity to A. salina; both are classified as category 3, which indicates a hazard for the aquatic environment, according to criteria of the Globally Harmonized Classification System. However, Roundup was more toxic than AKB, with 48-h median lethal concentration (LC50) values of 14.19 mg/L and 37.53 mg/L, respectively. For the embryo–larval toxicity test, Roundup proved more toxic than AKB for the mortality endpoint (96-h LC50 values of 10.17 mg/L and 27.13 mg/L, respectively), whereas for the hatching parameter, AKB was more toxic than Roundup. No significant genotoxicity to zebrafish larvae was found. We concluded that AKB and Roundup glyphosate-based formulations are phytotoxic and induce toxic effects in nontarget organisms such as A. salina and zebrafish early life stages.  FULL TEXT

Monsanto, 2002

Monsanto, 2002, Ultra Max II Herbicide Label, EPA Registration Number 524-537.


First Ultra Max II glyphosate herbicide for Roundup Ready crops label.  FULL TEXT

Monsanto, 1996

Monsanto, 1996, Roundup Herbicide Label, EPA Registration Number: 524-445.


First label for Roundup Ready soybeans.  FULL TEXT

Monsanto, 1994

Monsanto, 1994, Roundup Ultra Herbicide Label.


First herbicide label for Roundup Ultra. Full Text

Walsh et al., 2000

Lance P. Walsh, Chad McCormick, Clyde Martin, and Douglas M. Stocco, “Roundup Inhibits Steroidogenesis by Disrupting Steroidogenic Acute Regulatory (StAR) Protein Expression,” Environmental Health Perspectives, 2000, 108.


Recent reports demonstrate that many currently used pesticides have the capacity to disrupt reproductive function in animals. Although this reproductive dysfunction is typically characterized by alterations in serum steroid hormone levels, disruptions in spermatogenesis, and loss of fertility, the mechanisms involved in pesticide-induced infertility remain unclear. Because testicular Leydig cells play a cmcial role in male reproductive function by producing testosterone, we used the mouse MA-10 Leydig tumor cell line to study the molecular events involved in pesticide-induced alterations in steroid hormone biosynthesis. We previously showed that the organochlorine insecticide lindane and the organophosphate insecticide Dimethoate directly inhibit steroidogenesis in Leydig cells by disrupting expression of the steroidogenic acute regulatory (StAR) protein. StAR protein mediates the rate-limiting and acutely regulated step in steroidogenesis, the transfer of cholesterol from the outer to the inner mitochondrial membrane where the cytochrome P450 side chain cleavage (P450scc) enzyme initiates the synthesis of all steroid hormones. In the present study, we screened eight currendy used pesticide formulations for their ability to inhibit steroidogenesis, concentrating on their effects on StAR expression in MA-10 cells. In addition, we determined the effects of these compounds on the levels and activities of the P450scc enzyme (which converts cholesterol to pregnenolone) and the 3p-hydroxysteroid dehydrogenase (3P-HSD) enzyme (which converts pregnenolone to progesterone). Of the pesticides screened, only the pesticide Roundup inhibited dibutyryl [(Bu)2]cAMP-stimulated progesterone production in MA-10 cells without causing cellular toxicity. Roundup inhibited steroidogenesis by disrupting StAR protein expression, further demonstrating the susceptibility of StAR to environmental pollutants.   FULL TEXT

Back To Top