skip to Main Content

Bibliography Tag: roundup

Monsanto, 2015c

Monsanto, “Roundup Ready Plus 2015 Weed Management Recommendations and Incentives: Southwest,” 2015.


Not Available


Monsanto, 2015b

Monsanto, “Roundup Ready Plus 2015 Weed Management Recommendations and Incentives: Plains, Midwest, and Northeast,” 2015.


Not Available


Monsanto, 2015

Monsanto, “Roundup Ready Plus 2015 Weed Management Recommendations and Incentives: Midsouth and Southeast,” 2015.


Not Available


Mesnage et al., 2015b

Robin Mesnage, Matthew Arno, Manuela Costanzo, Manuela Malatesta, Gilles-Eric Séralini and Michael N. Antoniou, “Transcriptome profile analysis reflects rat liver and kidney damage following chronic ultra-low dose Roundup exposure,” Environmental Health, 2015, 14:70, DOI 10.1186/s12940-015-0056-1.


BACKGROUND:  Glyphosate-based herbicides (GBH) are the major pesticides used worldwide. Converging evidence suggests that GBH, such as Roundup, pose a particular health risk to liver and kidneys although low environmentally relevant doses have not been examined. To address this issue, a 2-year study in rats administering 0.1 ppb Roundup (50 ng/L glyphosate equivalent) via drinking water (giving a daily intake of 4 ng/kg bw/day of glyphosate) was conducted. A marked increased incidence of anatomorphological and blood/urine biochemical changes was indicative of liver and kidney structure and functional pathology. In order to confirm these findings we have conducted a transcriptome microarray analysis of the liver and kidneys from these same animals.

RESULTS: The expression of 4224 and 4447 transcript clusters (a group of probes corresponding to a known or putative gene) were found to be altered respectively in liver and kidney (p < 0.01, q < 0.08). Changes in gene expression varied from −3.5 to 3.7 fold in liver and from −4.3 to 5.3 in kidneys. Among the 1319 transcript clusters whose expression was altered in both tissues, ontological enrichment in 3 functional categories among 868 genes were found. First, genes involved in mRNA splicing and small nucleolar RNA were mostly upregulated, suggesting disruption of normal spliceosome activity. Electron microscopic analysis of hepatocytes confirmed nucleolar structural disruption. Second, genes controlling chromatin structure (especially histone-lysine N-methyltransferases) were mostly upregulated. Third, genes related to respiratory chain complex I and the tricarboxylic acid cycle were mostly downregulated. Pathway analysis suggests a modulation of the mTOR and phosphatidylinositol signalling pathways. Gene disturbances associated with the chronic administration of ultra-low dose Roundup reflect a liver and kidney lipotoxic condition and increased cellular growth that may be linked with regeneration in response to toxic effects causing damage to tissues. Observed alterations in gene expression were consistent with fibrosis, necrosis, phospholipidosis, mitochondrial membrane dysfunction and ischemia, which correlate with and thus confirm observations of pathology made at an anatomical, histological and biochemical level.

CONCLUSION: Our results suggest that chronic exposure to a GBH in an established laboratory animal toxicity model system at an ultra-low, environmental dose can result in liver and kidney damage with potential significant health implications for animal and human populations.  FULL TEXT

Mesnage et al., 2015

R. Mesnage, N. Defarge, J. Spiroux de Vendomois, G.E. Seralini, “Potential toxic effects of glyphosate and its commercial formulations below regulatory limits,” Food and Chemical Toxicology, 2015, 84, DOI: 10.1016/J.FCT.2015.08.012.


Glyphosate-based herbicides (GlyBH), including Roundup, are the most widely used pesticides worldwide. Their uses have increased exponentially since their introduction on the market. Residue levels in food or water, as well as human exposures, are escalating. We have reviewed the toxic effects of GlyBH measured below regulatory limits by evaluating the published literature and regulatory reports. We reveal a coherent body of evidence indicating that GlyBH could be toxic below the regulatory lowest observed adverse effect level for chronic toxic effects. It includes teratogenic, tumorigenic and hepatorenal effects. They could be explained by endocrine disruption and oxidative stress, causing metabolic alterations, depending on dose and exposure time. Some effects were detected in the range of the recommended acceptable daily intake. Toxic effects of commercial formulations can also be explained by GlyBH adjuvants, which have their own toxicity, but also enhance glyphosate toxicity. These challenge the assumption of safety of GlyBH at the levels at which they contaminate food and the environment, albeit these levels may fall below regulatory thresholds. Neurodevelopmental, reproductive, and transgenerational effects of GlyBH must be revisited, since a growing body of knowledge suggests the predominance of endocrine disrupting mechanisms caused by environmentally relevant levels of exposure. FULL TEXT


Bohn et al., 2014

T. Bøhn, , M. Cuhra, T. Traavik, M. Sanden, J. Fagan, R. Primicerio, “Compositional differences in soybeans on the market: Glyphosate accumulates in Roundup Ready GM soybeans,” Food Chemistry, 2014, 153, DOI: 10.1016/J.FOODCHEM.2013.12.054.


This article describes the nutrient and elemental composition, including residues of herbicides and pesticides, of 31 soybean batches from Iowa, USA. The soy samples were grouped into three different categories: (i) genetically modified, glyphosate-tolerant soy (GM-soy); (ii) unmodified soy cultivated using a conventional ‘‘chemical’’ cultivation regime; and (iii) unmodified soy cultivated using an organic cultivation regime. Organic soybeans showed the healthiest nutritional profile with more sugars, such as glucose, fructose, sucrose and maltose, significantly more total protein, zinc and less fibre than both conventional and GM-soy. Organic soybeans also contained less total saturated fat and total omega-6 fatty acids than both conventional and GM-soy. GM-soy contained high residues of glyphosate and AMPA (mean 3.3 and 5.7 mg/kg, respectively). Conventional and organic soybean batches contained none of these agrochemicals. Using 35 different nutritional and elemental variables to characterise each soy sample, we were able to discriminate GM, conventional and organic soybeans without exception, demonstrating ‘‘substantial non-equivalence’’ in compositional characteristics for ‘ready-to-market’ soybeans.  FULL TEXT

Richard et al., 2005

Richard S, Moslemi S, Sipahutar H, Benachour N, Seralini GE, “Differential effects of glyphosate and roundup on human placental cells and aromatase, ” Environmental Health Perspectives, 2005, 113:6.


Roundup is a glyphosate-based herbicide used worldwide, including on most genetically modified plants that have been designed to tolerate it. Its residues may thus enter the food chain, and glyphosate is found as a contaminant in rivers. Some agricultural workers using glyphosate have pregnancy problems, but its mechanism of action in mammals is questioned. Here we show that glyphosate is toxic to human placental JEG3 cells within 18 hr with concentrations lower than those found with agricultural use, and this effect increases with concentration and time or in the presence of Roundup adjuvants. Surprisingly, Roundup is always more toxic than its active ingredient. We tested the effects of glyphosate and Roundup at lower nontoxic concentrations on aromatase, the enzyme responsible for estrogen synthesis. The glyphosate-based herbicide disrupts aromatase activity and mRNA levels and interacts with the active site of the purified enzyme, but the effects of glyphosate are facilitated by the Roundup formulation in microsomes or in cell culture. We conclude that endocrine and toxic effects of Roundup, not just glyphosate, can be observed in mammals. We suggest that the presence of Roundup adjuvants enhances glyphosate bioavailability and/or bioaccumulation.  FULL TEXT

Mesnage et al., 2017

Mesnage R, Renney G, Séralini GE, Ward M, Antoniou MN, “Multiomics reveal non-alcoholic fatty liver disease in rats following chronic exposure to an ultra-low dose of Roundup herbicide,” Scientific Reports, 2017, 7:39328, DOI: 10.1038/srep39328.

ABSTRACT: The impairment of liver function by low environmentally relevant doses of glyphosate-based herbicides (GBH) is still a debatable and unresolved matter. Previously we have shown that rats administered for 2 years with 0.1 ppb (50 ng/L glyphosate equivalent dilution; 4 ng/kg body weight/day daily intake) of a Roundup GBH formulation showed signs of enhanced liver injury as indicated by anatomorphological, blood/urine biochemical changes and transcriptome profiling. Here we present a multiomic study combining metabolome and proteome liver analyses to obtain further insight into the Roundup-induced pathology. Proteins significantly disturbed (214 out of 1906 detected, q < 0.05) were involved in organonitrogen metabolism and fatty acid β-oxidation. Proteome disturbances reflected peroxisomal proliferation, steatosis and necrosis. The metabolome analysis (55 metabolites altered out of 673 detected, p < 0.05) confirmed lipotoxic conditions and oxidative stress by showing an activation of glutathione and ascorbate free radical scavenger systems. Additionally, we found metabolite alterations associated with hallmarks of hepatotoxicity such as γ-glutamyl dipeptides, acylcarnitines, and proline derivatives. Overall, metabolome and proteome disturbances showed a substantial overlap with biomarkers of non-alcoholic fatty liver disease and its progression to steatohepatosis and thus confirm liver functional dysfunction resulting from chronic ultra-low dose GBH exposure.  FULL TEXT

Clair et al., 2012

Clair E, Mesnage R, Travert C, Séralini GÉ, “A glyphosate-based herbicide induces necrosis and apoptosis in mature rat testicular cells in vitro, and testosterone decrease at lower levels,” Toxicology In Vitro, 2012, 26:2, doi: 10.1016/j.tiv.2011.12.009.

ABSTRACT: The major herbicide used worldwide, Roundup, is a glyphosate-based pesticide with adjuvants. Glyphosate, its active ingredient in plants and its main metabolite (AMPA) are among the first contaminants of surface waters. Roundup is being used increasingly in particular on genetically modified plants grown for food and feed that contain its residues. Here we tested glyphosate and its formulation on mature rat fresh testicular cells from 1 to 10000ppm, thus from the range in some human urine and in environment to agricultural levels. We show that from 1 to 48h of Roundup exposure Leydig cells are damaged. Within 24-48h this formulation is also toxic on the other cells, mainly by necrosis, by contrast to glyphosate alone which is essentially toxic on Sertoli cells. Later, it also induces apoptosis at higher doses in germ cells and in Sertoli/germ cells co-cultures. At lower non toxic concentrations of Roundup and glyphosate (1ppm), the main endocrine disruption is a testosterone decrease by 35%. The pesticide has thus an endocrine impact at very low environmental doses, but only a high contamination appears to provoke an acute rat testicular toxicity. This does not anticipate the chronic toxicity which is insufficiently tested, and only with glyphosate in regulatory tests.

Benachour and Seralini, 2009.

Benachour N, Séralini GE, “Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cell,” Chemical Research in Toxicology, 2009, 22(1):97-105, doi: 10.1021/ tx800218n.

ABSTRACT: We have evaluated the toxicity of four glyphosate (G)-based herbicides in Roundup formulations, from 10(5) times dilutions, on three different human cell types. This dilution level is far below agricultural recommendations and corresponds to low levels of residues in food or feed. The formulations have been compared to G alone and with its main metabolite AMPA or with one known adjuvant of R formulations, POEA. HUVEC primary neonate umbilical cord vein cells have been tested with 293 embryonic kidney and JEG3 placental cell lines. All R formulations cause total cell death within 24 h, through an inhibition of the mitochondrial succinate dehydrogenase activity, and necrosis, by release of cytosolic adenylate kinase measuring membrane damage. They also induce apoptosis via activation of enzymatic caspases 3/7 activity. This is confirmed by characteristic DNA fragmentation, nuclear shrinkage (pyknosis), and nuclear fragmentation (karyorrhexis), which is demonstrated by DAPI in apoptotic round cells. G provokes only apoptosis, and HUVEC are 100 times more sensitive overall at this level. The deleterious effects are not proportional to G concentrations but rather depend on the nature of the adjuvants. AMPA and POEA separately and synergistically damage cell membranes like R but at different concentrations. Their mixtures are generally even more harmful with G. In conclusion, the R adjuvants like POEA change human cell permeability and amplify toxicity induced already by G, through apoptosis and necrosis. The real threshold of G toxicity must take into account the presence of adjuvants but also G metabolism and time-amplified effects or bioaccumulation. This should be discussed when analyzing the in vivo toxic actions of R. This work clearly confirms that the adjuvants in Roundup formulations are not inert. Moreover, the proprietary mixtures available on the market could cause cell damage and even death around residual levels to be expected, especially in food and feed derived from R formulation-treated crops.

Back To Top