skip to Main Content

Bibliography Tag: science team publication

Nomura et al., 2022

Nomura, H., Hamada, R., Wada, K., Saito, I., Nishihara, N., Kitahara, Y., Watanabe, S., Nakane, K., Nagata, C., Kondo, T., Kamijima, M., Ueyama, J.; “Temporal trend and cross-sectional characterization of urinary concentrations of glyphosate in Japanese children from 2006 to 2015;” International Journal of Hygiene and Environmental Health, 2022, 242, 113963; DOI:10.1016/j.ijheh.2022.113963.

ABSTRACT:

Background Over the past two decades, domestic shipments of glyphosate (Gly), in the form of an ionic salt, have been increasing steadily in Japan. This increase has raising concerns about the effects of chemical exposure on children. The International Agency for Research on Cancer classified Gly as a “probably carcinogenic to humans (Group 2A)” in 2015. The purpose of the current study was to analyze Gly in urine samples of Japanese children to determine temporal changes, seasonal changes, and gender differences.

Method First-morning urine samples were obtained from 50 Japanese children (4–6-year-old) in October of 2006, 2011, and 2015 (total = 150) to investigate the temporal trends in urinary Gly concentrations. Additionally, first-morning urine samples were collected from 3-year-old children in August–September of 2012 (summer; n = 42) and in February of 2013 (winter; n = 42) to investigate the seasonal and gender differences, and the correlations between urinary Gly concentrations and insecticide exposure biomarkers. Urine samples were analyzed to measure for Gly using a liquid chromatography with tandem mass spectrometry (LC-MS/MS).

Results Detectable Gly concentrations were found in 41% of the 234 children. The 75th percentile and maximum concentrations of urinary Gly were 0.20 and 1.33 μg/L, respectively. The urinary Gly concentration in 2015 was significantly higher than in 2006, suggesting that the Gly exposure levels have been increasing. No seasonal or gender-specific differences in urinary Gly concentrations were observed, and no correlation with insecticide exposure biomarkers was found.

Conclusion This study revealed that Gly exposure trends show an increase between 2006 and 2015, and that season and gender were not the exposure-determining factors. Overall, urinary concentrations of Gly were comparable with studies from other countries.

 

Benbrook and Benbrook, 2021

Benbrook, Charles, & Benbrook, Rachel (2021). “A minimum data set for tracking changes in pesticide use.” In R. Mesnage & J. Zaller (Eds.), Herbicides: Elsevier and RTI Press.

ABSTRACT:

A frequently asked but deceptively simple question often arises about pesticide use on a given farm or crop: Is pesticide use going up, down, or staying about the same? Where substantial changes in pesticide use are occurring, it is also important to understand the factors driving change. These might include more or fewer hectares planted, a change in the crop mix, a higher or lower percentage of hectares treated, or higher or lower rates of application and/or number of applications. Or, it might arise from a shift to other pesticides applied at a higher or lower rate and/or lessened or greater reliance on nonpesticidal strategies and integrated pest management (IPM). Questions about whether pesticide use is changing and why arise for a variety of reasons. Rising use typically increases farmer costs and cuts into profit margins. It generally raises the risk of adverse environmental and/or public health outcomes. It can accelerate the emergence and spread of organisms resistant to applied pesticides. If the need to spray more continues year after year for long enough, farming systems become unsustainable. Lessened reliance on and use of pesticides, on the other hand, are typically brought about and can only be sustained by incrementally more effective prevention-based biointensive IPM systems (bioIPM).1–3 Fewer pesticide applications and fewer pounds/kilograms of active ingredient applied reduce the impacts on nontarget organisms and provide space for beneficial organisms and biodiversity to flourish. Such systems reduce the odds of significant crop loss in years when conditions undermine the efficacy of control measures, leading to spikes in pest populations and the risk of economically meaningful loss of crop yield and/or quality. FULL TEXT

Benbrook et al., 2021a

Benbrook, Charles, Perry, Melissa J., Belpoggi, Fiorella, Landrigan, Philip J., Perro, Michelle, Mandrioli, Daniele, Antoniou, Michael N., Winchester, Paul, & Mesnage, Robin; “Commentary: Novel strategies and new tools to curtail the health effects of pesticides;” Environmental Health, 2021, 20(1); DOI: 10.1186/s12940-021-00773-4.

ABSTRACT:

BACKGROUND: Flaws in the science supporting pesticide risk assessment and regulation stand in the way of progress in mitigating the human health impacts of pesticides. Critical problems include the scope of regulatory testing protocols, the near-total focus on pure active ingredients rather than formulated products, lack of publicly accessible information on co-formulants, excessive reliance on industry-supported studies coupled with reticence to incorporate published results in the risk assessment process, and failure to take advantage of new scientific opportunities and advances, e.g. biomonitoring and “omics” technologies.
RECOMMENDED ACTIONS: Problems in pesticide risk assessment are identified and linked to study design, data, and methodological shortcomings. Steps and strategies are presented that have potential to deepen scientific knowledge of pesticide toxicity, exposures, and risks.
We propose four solutions:
(1) End near-sole reliance in regulatory decision-making on industry-supported studies by supporting and relying more heavily on independent science, especially for core toxicology studies. The cost of conducting core toxicology studies at labs not affiliated with or funded directly by pesticide registrants should be covered via fees paid by manufacturers to public agencies.
(2) Regulators should place more weight on mechanistic data and low-dose studies within the range of contemporary exposures.
(3) Regulators, public health agencies, and funders should increase the share of exposure-assessment resources that produce direct measures of concentrations in bodily fluids and tissues. Human biomonitoring is vital in order to quickly identify rising exposures among vulnerable populations including applicators, pregnant women, and children.
(4) Scientific tools across disciplines can accelerate progress in risk assessments if integrated more effectively. New genetic and metabolomic markers of adverse health impacts and heritable epigenetic impacts are emerging and should be included more routinely in risk assessment to effectively prevent disease.
CONCLUSIONS: Preventing adverse public health outcomes triggered or made worse by exposure to pesticides will require changes in policy and risk assessment procedures, more science free of industry influence, and innovative strategies that blend traditional methods with new tools and mechanistic insights.

FULL TEXT

Benbrook et al., 2021

Benbrook, Charles, Kegley, Susan, & Baker, Brian; “Organic Farming Lessens Reliance on Pesticides and Promotes Public Health by Lowering Dietary Risks;” Agronomy, 2021, 11(7); DOI: 10.3390/agronomy11071266.

ABSTRACT:

Organic agriculture is a production system that relies on prevention, ecological processes, biodiversity, mechanical processes, and natural cycles to control pests and maintain productivity. Pesticide use is generally limited or absent in organic agroecosystems, in contrast with non-organic (conventional) production systems that primarily rely on pesticides for crop protection. Significant differences in pesticide use between the two production systems markedly alter the relative dietary exposure and risk levels and the environmental impacts of pesticides. Data are presented on pesticide use on organic and non-organic farms for all crops and selected horticultural crops. The relative dietary risks that are posed by organic and non-organic food, with a focus on fresh produce, are also presented and compared. The results support the notion that organic farms apply pesticides far less intensively than conventional farms, in part because, over time on well-managed organic farms, pest pressure falls when compared to the levels on nearby conventional farms growing the same crops. Biopesticides are the predominant pesticides used in organic production, which work by a non-toxic mode of action, and pose minimal risks to human health and the environment. Consequently, eating organic food, especially fruits and vegetables, can largely eliminate the risks posed by pesticide dietary exposure. We recommend ways to lower the pesticide risks by increased adoption of organic farming practices and highlight options along organic food supply chains to further reduce pesticide use, exposures, and adverse worker and environmental impacts. FULL TEXT

Haas et al., 2015

Haas, D. M., Parker, C. B., Wing, D. A., Parry, S., Grobman, W. A., Mercer, B. M., Simhan, H. N., Hoffman, M. K., Silver, R. M., Wadhwa, P., Iams, J. D., Koch, M. A., Caritis, S. N., Wapner, R. J., Esplin, M. S., Elovitz, M. A., Foroud, T., Peaceman, A. M., Saade, G. R., Willinger, M., Reddy, U. M., & NuMo, M. b study; “A description of the methods of the Nulliparous Pregnancy Outcomes Study: monitoring mothers-to-be (nuMoM2b);” American Journal of Obstetrics & Gynecology, 2015, 212(4), 539 e531-539 e524; DOI: 10.1016/j.ajog.2015.01.019.

ABSTRACT:

OBJECTIVE: The primary aim of the “Nulliparous Pregnancy Outcomes Study: monitoring mothers-to-be” is to determine maternal characteristics, which include genetic, physiologic response to pregnancy, and environmental factors that predict adverse pregnancy outcomes.

STUDY DESIGN: Nulliparous women in the first trimester of pregnancy were recruited into an observational cohort study. Participants were seen at 3 study visits during pregnancy and again at delivery. We collected data from in-clinic interviews, take-home surveys, clinical measurements, ultrasound studies, and chart abstractions. Maternal biospecimens (serum, plasma, urine, cervicovaginal fluid) at antepartum study visits and delivery specimens (placenta, umbilical cord, cord blood) were collected, processed, and stored. The primary outcome of the study was defined as pregnancy ending at <37+0 weeks’ gestation. Key study hypotheses involve adverse pregnancy outcomes of spontaneous preterm birth, preeclampsia, and fetal growth restriction.

RESULTS: We recruited 10,037 women to the study. Basic characteristics of the cohort at screening are reported.

CONCLUSION: The “Nulliparous Pregnancy Outcomes Study: monitoring mothers-to-be” cohort study methods and procedures can help investigators when they plan future projects.

FULL TEXT

Perry et al., 2019

Perry, M. J., Mandrioli, D., Belpoggi, F., Manservisi, F., Panzacchi, S., & Irwin, C.; “Historical evidence of glyphosate exposure from a US agricultural cohort;” Environmental Health, 2019, 18(1), 42; DOI: 10.1186/s12940-019-0474-6.

ABSTRACT:

In response to the recent review by Gillezeau et al., The evidence of human exposure to glyphosate: A review, Environmental Health 1/19/19, here we report additional glyphosate biomonitoring data from a repository of urine samples collected from United States farmers in 1997-98. To determine if glyphosate exposure could be identified historically, we examined urine samples from a biorepository of specimens collected from US dairy farmers between 1997 and 98. We compared samples from farmers who self-reported glyphosate application in the 8 h prior to sample collection to samples from farm applicators who did not report using glyphosate. Of 18 applicator samples tested, 39% showed detectable levels of glyphosate (mean concentration 4.04 mug/kg; range:1.3-12) compared to 0% detections among 17 non glyphosate applicator samples (p-value < 0.01). One of the applicator samples that tested positive for glyphosate also tested positive for AMPA. Concentrations of glyphosate were consistent with levels reported in the prior occupational biomonitoring studies reviewed by Gillezeau et al.Accurately detecting both glyphosate and AMPA in this small sample of Wisconsin farmers demonstrates a) glyphosate exposures among farmers were occurring 20 years ago, which was prior to the widespread planting of genetically engineered glyphosate tolerant crops first approved in 1996; and b) liquid chromatography tandem mass spectrometry (LC-MS/MS) can be used for sensitive characterization in cryopreserved urine samples. These data offer an important historical benchmark to which urinary levels from current and future biomonitoring studies can be compared. FULL TEXT

Perro, 2019

Perro, Michelle, “Childhood Leukemia, the Microbiome, and Glyphosate: A Doctor’s Perspective,” GMOScience.org, January 15, 2019.

SUMMARY:

  • Childhood leukemia is on the rise
  • Exposure to pesticides is known to increase the risk of childhood leukemia, as well as other types of cancer
  • New research links an impoverished gut microbiome (bacterial community) and chronic inflammation with increased risk of childhood leukemia
  • Diet-related ways are being sought to improve the microbiome and prevent the inflammation that triggers childhood leukemia
  • Glyphosate herbicides are used on around 90% of GM crops; glyphosate has been classified as a probable carcinogen by the World Health Organization’s cancer agency IARC
  • Exposure to glyphosate-based and other pesticides has been shown to disrupt the gut microbiome in laboratory animals
  • People who eat organic food have been found to have a 25% reduced risk of cancer
  • Clinical experience shows that switching to an organic and non-GMO diet improves people’s health
  • Controlled studies are needed to verify how switching to an organic and non-GMO diet affects the microbiome and certain disease conditions.

FULL TEXT

Perro and Adams, 2017

Perro, Michelle and Adams, Vincanne, “What’s Making Our Children Sick? How Industrial Food Is Causing an Epidemic of Chronic Illness, and What Parents (and Doctors) Can Do About It,” Chelsea Green Publishing, 2017.

SUMMARY:

With chronic disorders among American children reaching epidemic levels, hundreds of thousands of parents are desperately seeking solutions to their children’s declining health, often with little medical guidance from the experts. What’s Making Our Children Sick? convincingly explains how agrochemical industrial production and genetic modification of foods is a culprit in this epidemic. Is it the only culprit? No. Most chronic health disorders have multiple causes and require careful disentanglement and complex treatments. But what if toxicants in our foods are a major culprit, one that, if corrected, could lead to tangible results and increased health? Using patient accounts of their clinical experiences and new medical insights about pathogenesis of chronic pediatric disorders—taking us into gut dysfunction and the microbiome, as well as the politics of food science—this book connects the dots to explain our kids’ ailing health.

What’s Making Our Children Sick? explores the frightening links between our efforts to create higher-yield, cost-efficient foods and an explosion of childhood morbidity, but it also offers hope and a path to effecting change. The predicament we now face is simple. Agroindustrial “innovation” in a previous era hoped to prevent the ecosystem disaster of DDT predicted in Rachel Carson’s seminal book in 1962, Silent Spring. However, this industrial agriculture movement has created a worse disaster: a toxic environment and, consequently, a toxic food supply. Pesticide use is at an all-time high, despite the fact that biotechnologies aimed to reduce the need for them in the first place. Today these chemicals find their way into our livestock and food crop industries and ultimately onto our plates. Many of these pesticides are the modern day equivalent of DDT. However, scant research exists on the chemical soup of poisons that our children consume on a daily basis. As our food supply environment reels under the pressures of industrialization via agrochemicals, our kids have become the walking evidence of this failed experiment. What’s Making Our Children Sick? exposes our current predicament and offers insight on the medical responses that are available, both to heal our kids and to reverse the compromised health of our food supply.

Mesnage et al., 2019

Mesnage, R., Benbrook, C., & Antoniou, M. N.; “Insight into the confusion over surfactant co-formulants in glyphosate-based herbicides;” Food and Chemical Toxicology, 2019, 128, 137-145; DOI: 10.1016/j.fct.2019.03.053.

ABSTRACT:

Glyphosate is the active ingredient in glyphosate-based herbicides (GBHs). Other chemicals in GBHs are presumed as inert by regulatory authorities and are largely ignored in pesticide safety evaluations. We identified the surfactants in a cross-section of GBH formulations and compared their acute toxic effects. The first generation of polyethoxylated amine (POEA) surfactants (POE-tallowamine) in Roundup are markedly more toxic than glyphosate and heightened concerns of risks to human health, especially among heavily-exposed applicators. Beginning in the mid-1990s, first-generation POEAs were progressively replaced by other POEA surfactants, ethoxylated etheramines, which exhibited lower non-target toxic effects. Lingering concern over surfactant toxicity was mitigated at least in part within the European Union by the introduction of propoxylated quaternary ammonium surfactants. This class of POEA surfactants are approximately 100 times less toxic to aquatic ecosystems and human cells than previous GBH-POEA surfactants. As GBH composition is legally classified as confidential commercial information, confusion concerning the identity and concentrations of co-formulants is common and descriptions of test substances in published studies are often erroneous or incomplete. In order to resolve this confusion, laws requiring disclosure of the chemical composition of pesticide products could be enacted. Research to understand health implications from ingesting these substances is required. FULL TEXT

Landrigan and Goldman, 2011

Landrigan, Philip J, & Goldman, Lynn R; “Children’s vulnerability to toxic chemicals: a challenge and opportunity to strengthen health and environmental policy;” Health Affairs, 2011, 30(5), 842-850; DOI: 10.1377/hlthaff.2011.0151.

ABSTRACT:

A key policy breakthrough occurred nearly twenty years ago with the discovery that children are far more sensitive than adults to toxic chemicals in the environment. This finding led to the recognition that chemical exposures early in life are significant and preventable causes of disease in children and adults. We review this knowledge and recommend a new policy to regulate industrial and consumer chemicals that will protect the health of children and all Americans, prevent disease, and reduce health care costs. The linchpins of a new US chemical policy will be: first, a legally mandated requirement to test the toxicity of chemicals already in commerce, prioritizing chemicals in the widest use, and incorporating new assessment technologies; second, a tiered approach to premarket evaluation of new chemicals; and third, epidemiologic monitoring and focused health studies of exposed populations.  FULL TEXT

Back To Top