skip to Main Content
Phil Landrigan

Archived Blog Posts
  • Heartland Study Enrolls 1,000th Mother-Infant Pair

    July 19, 2024 – In June of this year, the Heartland Study achieved a major milestone, enrolling its 1,000th mother-infant pair. Enrollment is now at 50% of goal. The objective of the Study is to help fill major gaps in our understanding of the impacts of herbicides on maternal and infant health. Currently in Phase 1, the Study is focused on evaluating associations between herbicide concentrations in body fluids and tissue samples from pregnant women and infants, and pregnancy/childbirth outcomes. Phase 2 is designed to evaluate potential associations between herbicide biomarkers and early childhood neurological development. Much appreciation for the mothers enrolled, and the entire Heartland Study Team including scientists, support staff and clinicians for this tremendous achievement, and for our funders to making this work possible. Read more about the study including peer-reviewed studies published in Chemosphere and Agrichemicals at our publications  page. The investment required to conduct this study exceeds $1 million each year. You can support this important work by making a donation here.

  • Consumer Reports Releases Comprehensive, Science-Based Report Highlighting Pesticide Risks in Fruits and Vegetables

    By Thomas Green, PhD, chair, HHRA Board of Directors Consumer Reports (CR) published a cover story today on pesticides on fruits and vegetables in the US food supply. CR concluded that “20% of the 59 fruit and vegetables tested posed a high risk from pesticides.” Blueberries, green beans, watermelons, bell peppers, potatoes, kale, and mustard greens were among the 12 highest-risk foods. What’s going on here? The United States Department of Agriculture (USDA) annually publishes a report with results from pesticide residue sampling completed two years prior. In January, the USDA’s report assured consumers that 99% of more than 10,000 samples of foods collected in 2022 had pesticides at or below EPA-set legal limits. To add to the confusion, the EWG (formerly Environmental Working Group) follows up each USDA report with its “Shopper’s Guide to Pesticides in Produce” and its widely promoted Dirty Dozen and Clean 15 lists. This year, EWG “determined that 75 percent of all conventional fresh produce sampled had residues of potentially harmful pesticides.” Blueberries, green beans, bell peppers, potatoes, kale, and mustard greens made the EWG’s Dirty Dozen, but not watermelon. Grapes and peaches also made the Dirty Dozen but didn’t make CR’s list of 12 highest risk foods. Three very different perspectives, yet all three organizations use the same data source! Residue data are generated by the USDA, which collects and tests domestic and imported food samples from our food distribution system in multiple states each year. Why the discrepancy in findings? Here’s the story The USDA uses “residue tolerances” established by the US Environmental Protection Agency (EPA). Residues under the tolerance level are regarded as safe. Foods with pesticide residues over the tolerance render the food adulterated. Food declared as such is supposed to be removed from the marketplace but fresh produce rarely is. The EPA tracks total dietary exposures to a given pesticide based on all tolerances that have been approved and by law must determine that there is a “reasonable certainty of no harm” from total exposures. As reported by the USDA this year, of the 10,665 samples collected in 2022, 325 had pesticide residues exceeding the tolerance or present in the absence of a tolerance, or about 3% in total. A third of the samples with over-tolerance, presumptively unsafe residues were US-grown; two-thirds were imported foods. In 2022, 27% of samples tested had no detectable residues. The EWG uses pesticide residue detections, so regardless of the tolerance level set for a pesticide, each residue detected is counted. A food makes the Dirty Dozen list if it is among the foods with the highest number of pesticide residues. Residues of some pesticides known to pose health hazard are weighted more heavily. The EWG typically lumps US and foreign-grown food in their report. In the report released today, CR analyzed USDA data on 59 foods in more than 26,000 samples tested by the USDA over seven years (2016-2022). CR used EPA-set toxicity thresholds for most pesticides but added the full 10-fold safety factor called for in federal law to several more high-risk pesticides than the EPA does. CR scientists consider the EPA’s tolerances to be too high for some pesticides, so they developed these lower limits for “pesticides that can harm the body’s neurological system” or are suspected of interfering with human hormones. The analytical work supporting the CR report was completed by a team led by the HHRA’s founder and first executive director Chuck Benbrook, and grounded in analyses conducted using the Dietary Risk Index (DRI) system currently housed on the HHRA’s website. The DRI is also included in the Pesticide Risk Tool, developed by a team I led and housed at the IPM Institute. I co-founded the IPM Institute in 1998 where our Sustainable Food Group continues to work with food companies and supply chains to reduce pesticide risks among other initiatives. So which report wins the day? All three have value, and all three point to opportunities for improvement. Without the USDA’s highly regarded pesticide residue testing program, efforts to reduce the frequency of high-risk residues would be like shooting in the dark. Of the three analyses, the USDA’s report represents the least conservative approach to estimating risk. Yet the level of tolerance violations reported by the USDA represents hundreds of millions of presumptively unsafe servings of food in the US every year! The EWG and CR take a more conservative approach to estimating and avoiding risk. Both organizations recognize that not all potential risks have been identified or accounted for in EPA risk estimates. For example, we all ingest multiple pesticide residues daily via food and drink, but their combined risk is not taken into account by the EPA. CR’s approach is more science-based and more closely aligned with the EPA’s dietary risk assessment. CR’s methodology is driven by measured residue levels, EPA-set exposure thresholds based mostly on animal studies, and standard food serving sizes. Not all pesticide residues pose equal risk, in fact they vary by over 10,000-fold! What’s the bottom line? All three organizations recommend that everyone should eat lots of fresh fruits and vegetables. The benefits to health outweigh the risks of pesticide exposure. The EWG recommends consumers buy organic versions of its Dirty Dozen. CR recommends limiting consumption of foods they have identified as highest risk to ½ serving per day or less, and buying organic when available and affordable. A common question is, “Can I remove pesticide residues by washing?” Before testing, food samples used in these reports are at a minimum lightly washed. Additional washing may help but will not achieve anywhere near our potential to reduce risk. It’s important to highlight that US-grown conventional food samples have generated fewer tolerance violations year after year compared to imported food, and that organic foods have also consistently generated far fewer violations than conventionally grown samples. In addition, the overall pesticide risk reduction achieved for birds, bees, and people since passage of the Food Quality Protection Act in 1996 has been astounding and readily […]

  • Russell King | Executive Director Reading Science: A Guide for We Who Are Not Scientists

    By Russell K. King, HHRA Executive Director Less than a week ago, the academic publisher Sage Journals retracted studies that questioned the long-established safety record of mifepristone. In December. Nature ran a piece noting that, in 2023, more than 10,000 scientific papers–a record number–were retracted. Not understanding the data, the anti-science voices decry the retractions as proof of corruption in the research community. Misunderstanding scientific publishing is an old and common problem. Early in my career, I was editor of a peer-reviewed medical journal, and part of my job was to translate the scientific language into messages more easily understood by nonscientific readers. I offer here a guide to reading scientific papers when you’re not a scientist. This method is not the only method, and I didn’t create it, but I’ve found it useful. Before I do, however, I hasten to say that the wave of retractions last year does not indicate a wave of fraud in science. The number of journals in publication rose from 1 million in 1997 to 3 million in 2020, yet the average number of retractions per journal has remained largely flat during that time.  Half of the retractions are for reasons other than fabrication, falsification, or plagiarism. The data seem to say the scientific community has stepped up.  Scientists are pressuring journals, and, in turn, journals are improving their policing of papers after publication. Reading scientific papers Step by step: 1. read the abstract to get the general idea of what the paper is about; 2. read the figures and legends to understand the data (then look to see whether they align with the conclusions in the abstract); 3. read the discussion, where the authors summarize and interpret the data (then see whether it aligns with the data in the figures and the overview in the abstract); and 4. if it’s not your field of expertise (true for most of us, even if it’s hard to admit), read the introduction to get a feel for what the relevant literature says; 5. if you’re evaluating how they got from the data to the conclusions, read the discussion (are they using standard methods, missing controls, using a representative sample and a control group, etc.?); and 6. read through a few references to see whether they say what the authors claim they do (padding the references with papers that do not fit is often a way to build false credibility). Red flags As you’re reading, keep your eyes open for signs that should cause you to pause and question the paper’s validity. Red flags don’t necessarily mean the paper is untrustworthy, just that we should not draw conclusions without digging deeper.  Some such red flags are: 1. the author has no expertise in the subject of the paper (is their degree in a relevant field, have they worked in the field, have they previously published in the field in reputable journals?)–crossovers are not uncommon, but these will typically have a coauthor who has credible expertise; 2. the references are old, meaning fewer than six citations from the past five years; 3. the results asserted are not closely tied to the data or are not placed in context with other studies; 4. the conclusions contradict the literature or general scientific consensus–advances happen, but this should prompt us to withhold judgment until we get more information; 5. funders are not disclosed; 6. conflicts of interest are not declared; and 7. the results have not been peer reviewed. Know yourself Because science and anti-science have become such powerful forces in cultural and political differences, it’s vital that we check ourselves as we read and evaluate scientific papers. No matter how well trained we are in critical thinking, no matter how separate we think we are from the cultural and political echo chambers around us, we are still human and we are still given to myriad thinking errors. To deal with the overwhelming amount of information our brains take in, our brains seek shortcuts to lessen the burden. Sometimes these shortcuts are helpful; too often they are not. At minimum, we process information through our personal confirmation bias and a complex, overlapping, ever-changing matrix of internal filters made of everything from our DNA to what we had for lunch. We must ask ourselves–more often than is comfortable–whether our understanding of what we’re reading is being distorted by our own emotions, preferences, prejudices, assumptions, and hopes. This requires us to be honest with ourselves about our emotions, preferences, prejudices, assumptions, and hopes. Read! Science is always emerging, never static. By the moment, it grows ever broader, deeper, more beautiful, more fascinating, and more important to our lives. We depend on science to bring us new information and understanding, to correct the errors of our past and–yes–to retract papers that are erroneous. The 10,000 retractions of 2023 should enhance, not undermine, our appreciation for the men and women of science who share their work with us.  What’s happening in science is exciting, and I promise you that reading about it is more than worth the effort.    

  • Securing the Future of Science: Planned Giving for HHRA

    Planned giving is the process of donating planned gifts, also known as legacy gifts, which are contributions that are arranged in the present and allocated at a future date. Commonly donated through a will or trust, planned gifts are usually granted when a donor passes away.  If you’d like to plan a gift for to support the important work of HHRA, you may use this form.  Thank you. Tax benefits:  Donors can contribute appreciated property, like securities or real estate, receive a charitable deduction for the full market value of the asset, and pay no capital gains tax on the transfer.  Donors who establish a life-income gift receive a tax deduction for the full, fair market value of the assets contributed, minus the present value of the income interest retained; if they fund their gift with appreciated property they pay no upfront capital gains tax on the transfer.  Gifts payable to the HHRA upon the donor’s death, like a bequest or a beneficiary designation in a life insurance policy or retirement account, do not generate a lifetime income tax deduction for the donor, but they are exempt from estate tax. More information: For those who wish to make legacy gifts that are guaranteed to support their own philanthropic interests and intentions, planned or deferred gifts may be most effective. Planned gifts require more planning than most current gifts or income or equity, often including legal and accounting counsel from a donor’s trusted advisors. Because these gifts produce philanthropic benefits to recipient organizations, there may be benefits to the donors or their heirs via reductions in state or federal income, capital gains, estate, or gift taxes. There are many ways to make planned gifts, the most simple of which are life insurance policies, designated distributions from retirement funds, or bequests, where donors designate a percentage or a specific amount of their estate to the recipient charity.  Specific amounts are preferable, as they do not require a full valuation of the estate before distribution can be made. For donors over the age of 70 ½ years who are required to take minimum annual distributions from their Traditional or Roth Individual Retirement Accounts (IRAs), up to $100,000 may be directed to charitable causes, with potentially significant tax savings each year. More complex planned giving arrangements such as charitable gift annuities, charitable remainder unitrusts, charitable remainder annuity trusts, lead trusts and others may provide donors with guaranteed income for the remainder of their lives in exchange for funds transferred to charities now. The gist of most such gift vehicles involves a donor making a current gift to a charity with commensurate tax benefits, the charity paying the donor per agreed-upon terms from those funds in the years that follow, with the remainder of the funds at the donor’s death remaining with the charity in perpetuity.

  • HHRA Earns 2024 Highest Recognition for Transparency

    By Russell K. King, HHRA Executive Director I’m pleased to announce that the HHRA has once again earned the Candid Platinum Seal of Transparency (our first was in 2023)-–an achievement earned by fewer than one percent of US-based nonprofits. The Candid Platinum Seal is the highest level of recognition offered by Candid (formerly known as GuideStar) and is awarded to organizations that meet the highest standards of transparency and accountability. The Candid Platinum Seal demonstrates the HHRA’s commitment to transparency and accountability. Our board, staff, volunteers, and partners believe that by sharing our data, metrics, and strategic priorities with the public, we can build trust and confidence in our organization and our work. To earn the Candid Platinum Seal, non-profit organizations must meet a rigorous set of criteria, including providing complete and accurate information about their mission, programs, finances, and governance on the Candid website, and sharing strategic priorities and information about outcomes.

The Role of the Heartland Study and HHRA in the Global Glyphosate Study

Nov 13th, 2023
Nov 13th, 2023
Phil Landrigan

By Philip Landrigan, MD, Chair, HHRA Science Advisory Committee

As the design of the five-year Global Glyphosate Study (GGS) came into focus in 2018-2019, I served as chair of the Ramazzini Institute (RI) Science Advisory Committee. Melissa Perry, MD, then the co-primary investigator the Heartland Study, served with me on this committee. During those early meetings with RI scientists, we learned that the original design of the GGS would have included only two treatment groups: one fed pure glyphosate, and a second fed Roundup BioFlow, the new GBH formulation containing quaternary ammonium surfactants that is now used in Europe. Roundup BioFlow replaced the POEA-surfactant based Roundup brands that were banned by the EU in 2016 over human-health concerns.

As originally designed by the RI, the GGS would have been of limited relevance in the US. Over the last 50 years most applicators and farm workers in the US, and in most other countries outside of the EU, have been exposed to a formulated GBH containing POEA-based surfactants, such as Ranger Pro.

In response, Dr. Perry and I suggested to RI colleagues that they should add Ranger Pro to the GGS. The RI scientists said they could do so, but that additional funding would be needed to cover the added cost. The Heartland Study Management Team requested a budget from the RI that called for payment of about $950k over five years.

The HS Management Team concluded that the scientific and regulatory value of the GGS in the US, and indeed worldwide, would be markedly enhanced if the GGS included a second POEA-based formulation, such as Ranger Pro. The HS MT therefore agreed to provide the requested funding to the RI on the condition that the funding required to meet the RI payment schedule would not come at the expense of sustaining planned Heartland Study clinical research activities.

In mid-2020, the Heartland Health Research Alliance (HHRA) was incorporated and took over governance, administrative functions, and fundraising supporting the Heartland Study. By the end of 2020, HHRA had also taken over management of all then-existing Heartland Study contracts, agreements, staffing and consultant contracts, and fundraising, including all activities arising from the HHRA-RI partnership.

Looking back, the decision by the HSMT to cover the costs of the added GGS treatment group was a risky one, which increased the challenges inherent in concurrently funding both the Heartland Study and the Ranger Pro feeding groups in the GGS.

However, the addition of the RangerPro treatment group has already paid off. It has provided valuable information that would not otherwise be available. Most importantly, it has shown that RangerPro and other POEA-based GBH formulations are among those most likely to cause leukemia

Going forward, the RangerPro exposure groups will help resolve critical questions on whether and how exposures to glyphosate or GBHs might be contributing to reproductive problems, birth defects, and developmental anomalies, as well as cancer and other chronic metabolic diseases.

Given that glyphosate-based herbicides remain by far the most heavily applied pesticides in the US and globally, with well over three-quarters of humankind exposed on a near-daily basis, time is of the essence in seeking clarity on the adverse health outcomes stemming from exposure to this herbicide.

 

Back To Top