Bibliography Tag: 2 4 d

Nishioka et al., 2001

Nishioka, M. G., Lewis, R. G., Brinkman, M. C., Burkholder, H. M., Hines, C. E., & Menkedick, J. R.; “Distribution of 2,4-D in air and on surfaces inside residences after lawn applications: comparing exposure estimates from various media for young children;” Environmental Health Perspectives, 2001, 109(11), 1185-1191; DOI: 10.1289/ehp.011091185.


We collected indoor air, surface wipes (floors, table tops, and window sills), and floor dust samples at multiple locations within 11 occupied and two unoccupied homes both before and after lawn application of the herbicide 2,4-D. We measured residues 1 week before and after application. We used collected samples to determine transport routes of 2,4-D from the lawn into the homes, its subsequent distribution between the indoor surfaces, and air concentration as a function of airborne particle size. We used residue measurements to estimate potential exposures within these homes. After lawn application, 2,4-D was detected in indoor air and on all surfaces throughout all homes. Track-in by an active dog and by the homeowner applicator were the most significant factors for intrusion. Resuspension of floor dust was the major source of 2,4-D in indoor air, with highest levels of 2,4-D found in the particle size range of 2.5-10 microm. Resuspended floor dust was also a major source of 2,4-D on tables and window sills. Estimated post application indoor exposure levels for young children from nondietary ingestion may be 1-10 microg/day from contact with floors, and 0.2-30 microg/day from contact with table tops. These are estimated to be about 10 times higher than the preapplication exposures. By comparison, dietary ingestion of 2,4-D is approximately 1.3 microg/day. FULL TEXT

Malagoli et al., 2016

Malagoli, C., Costanzini, S., Heck, J. E., Malavolti, M., De Girolamo, G., Oleari, P., Palazzi, G., Teggi, S., & Vinceti, M.; “Passive exposure to agricultural pesticides and risk of childhood leukemia in an Italian community;” International Journal of Hygiene and Environmental Health, 2016, 219(8), 742-748; DOI: 10.1016/j.ijheh.2016.09.015.


BACKGROUND: Exposure to pesticides has been suggested as a risk factor for childhood leukemia, but definitive evidence on this relation and the specific pesticides involved is still not clear.

OBJECTIVE: We carried out a population-based case-control study in a Northern Italy community to assess the possible relation between passive exposure to agricultural pesticides and risk of acute childhood leukemia.

METHODS: We assessed passive pesticide exposure of 111 childhood leukemia cases and 444 matched controls by determining density and type of agricultural land use within a 100-m radius buffer around children’s homes. We focused on four common crop types, arable, orchard, vineyard and vegetable, characterized by the use of specific pesticides that are potentially involved in childhood induced leukemia. The use of these pesticides was validated within the present study. We computed the odds ratios (OR) of the disease and their 95% confidence intervals (CI) according to type and density of crops around the children’s homes, also taking into account traffic pollution and high-voltage power line magnetic field exposure.

RESULTS: Childhood leukemia risk did not increase in relation with any of the crop types with the exception of arable crops, characterized by the use of 2.4-D, MCPA, glyphosate, dicamba, triazine and cypermethrin. The very few children (n=11) residing close to arable crops had an OR for childhood leukemia of 2.04 (95% CI 0.50-8.35), and such excess risk was further enhanced among children aged <5 years.

CONCLUSIONS: Despite the null association with most crop types and the statistical imprecision of the estimates, the increased leukemia risk among children residing close to arable crops indicates the need to further investigate the involvement in disease etiology of passive exposure to herbicides and pyrethroids, though such exposure is unlikely to play a role in the vast majority of cases. FULL TEXT


Smith et al., 2017

Smith, A. M., Smith, M. T., La Merrill, M. A., Liaw, J., & Steinmaus, C.; “2,4-dichlorophenoxyacetic acid (2,4-D) and risk of non-Hodgkin lymphoma: a meta-analysis accounting for exposure levels;” Annals of Epidemiology, 2017, 27(4), 281-289 e284; DOI: 10.1016/j.annepidem.2017.03.003.


2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the most commonly used selective herbicides in the world. A number of epidemiology studies have found an association between 2,4-D exposure and non-Hodgkin lymphoma (NHL) but these results are inconsistent and controversial. A previous meta-analysis found no clear association overall but did not specifically examine high-exposure groups. We conducted a systematic review and meta-analysis of the peer-reviewed epidemiologic studies of the associations between 2,4-D and NHL, with a particular focus on high-exposure groups, and evaluations of heterogeneity, dose-response, and bias. A total of 12 observational studies, 11 case-control studies, and one cohort study, were included. The summary relative risk for NHL using study results comparing subjects who were ever versus never exposed to 2,4-D was 1.38 (95% confidence interval (CI), 1.07-1.77). However, in analyses focusing on results from highly exposed groups, the summary relative risk for NHL was 1.73 (95% CI, 1.10-2.72). No clear bias based on study design, exposure assessment methodology, or outcome misclassification was seen. Overall, these findings provide new evidence for an association between NHL and exposure to the herbicide 2,4-D. FULL TEXT


Burns and Swaen, 2012

Burns, C. J., & Swaen, G. M.; “Review of 2,4-dichlorophenoxyacetic acid (2,4-D) biomonitoring and epidemiology;” Critical Reviews in Toxicology, 2012, 42(9), 768-786; DOI: 10.3109/10408444.2012.710576.


A qualitative review of the epidemiological literature on the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and health after 2001 is presented. In order to compare the exposure of the general population, bystanders and occupational groups, their urinary levels were also reviewed. In the general population, 2,4-D exposure is at or near the level of detection (LOD). Among individuals with indirect exposure, i.e. bystanders, the urinary 2,4-D levels were also very low except in individuals with opportunity for direct contact with the herbicide. Occupational exposure, where exposure was highest, was positively correlated with behaviors related to the mixing, loading and applying process and use of personal protection. Information from biomonitoring studies increases our understanding of the validity of the exposure estimates used in epidemiology studies. The 2,4-D epidemiology literature after 2001 is broad and includes studies of cancer, reproductive toxicity, genotoxicity, and neurotoxicity. In general, a few publications have reported statistically significant associations. However, most lack precision and the results are not replicated in other independent studies. In the context of biomonitoring, the epidemiology data give no convincing or consistent evidence for any chronic adverse effect of 2,4-D in humans. FULL TEXT

Rappazzo et al., 2018

Rappazzo, K. M., Warren, J. L., Davalos, A. D., Meyer, R. E., Sanders, A. P., Brownstein, N. C., & Luben, T. J.; “Maternal residential exposure to specific agricultural pesticide active ingredients and birth defects in a 2003-2005 North Carolina birth cohort;” Birth Defects Research, 2018; DOI: 10.1002/bdr2.1448.


BACKGROUND: Previously we observed elevated odds ratios (ORs) for total pesticide exposure and 10 birth defects: three congenital heart defects and structural defects affecting the gastrointestinal, genitourinary and musculoskeletal systems. This analysis examines association of those defects with exposure to seven commonly applied pesticide active ingredients.

METHODS: Cases were live-born singleton infants from the North Carolina Birth Defects Monitoring Program linked to birth records for 2003-2005; noncases served as controls (total n = 304,906). Pesticide active ingredient exposure was assigned using a previously constructed metric based on crops within 500 m of residence, dates of pregnancy, and likely chemical application dates for each pesticide-crop combination. ORs (95% CI) were estimated with logistic regression for categories of exposure compared to unexposed. Models were adjusted for maternal race/ethnicity, age at delivery, education, marital status, and smoking status.

RESULTS: Associations varied by birth defect and pesticide combinations. For example, hypospadias was positively associated with exposures to 2,4-D (OR50th to <90th percentile : 1.39 [1.18, 1.64]), mepiquat (OR50th to <90th percentile : 1.10 [0.90, 1.34]), paraquat (OR50th to <90th : 1.14 [0.93, 1.39]), and pendimethalin (OR50th to <90th : 1.21 [1.01, 1.44]), but not S-metolachlor (OR50th to <90th : 1.00 [0.81, 1.22]). Whereas atrial septal defects were positively associated with higher levels of exposure to glyphosate, cyhalothrin, S-metolachlor, mepiquat, and pendimethalin (ORs ranged from 1.22 to 1.35 for 50th to <90th exposures, and 1.72 to 2.09 for >90th exposures); associations with paraquat were null or inconsistent (OR 50th to <90th: 1.05 (0.87, 1.27).

CONCLUSION: Our results suggest differing patterns of association for birth defects with residential exposure to seven pesticide active ingredients in North Carolina.

Aylward et al., 2010

Aylward, Lesa L., Morgan, Marsha K., Arbuckle, Tye E., Barr, Dana B., Burns, Carol J., Alexander, Bruce H., & Hays, Sean M.; “Biomonitoring data for 2,4-dichlorophenoxyacetic acid in the United States and Canada: Interpretation in a public health risk assessment context using biomonitoring equivalents;” Environmental Health Perspectives, 2010, 118, 177-181; DOI: 10.1289/ehp.0900970.


BACKGROUND: Several extensive studies of exposure to 2,4-dichlorophenoxyacetic acid (2,4-D) using urinary concentrations in samples from the general population, farm applicators, and farm family members are now available. Reference doses (RfDs) exist for 2,4-D, and Biomonitoring Equivalents (BEs; concentrations in urine or plasma that are consistent with those RfDs) for 2,4-D have recently been derived and published.

OBJECTIVE: We reviewed the available biomonitoring data for 2,4-D from the United States and Canada and compared them with BE values to draw conclusions regarding the margin of safety for 2,4-D exposures within each population group.

DATA SOURCES: Data on urinary 2,4-D excretion in general and target populations from recent published studies are tabulated and the derivation of BE values for 2,4-D summarized.

DATA SYNTHESIS: The biomonitoring data indicate margins of safety (ratio of BE value to biomarker concentration) of approximately 200 at the central tendency and 50 at the extremes in the general population. Median exposures for applicators and their family members during periods of use appear to be well within acute exposure guidance values.

CONCLUSIONS: Biomonitoring data from these studies indicate that current exposures to 2,4-D are below applicable exposure guidance values. This review demonstrates the value of biomonitoring data in assessing population exposures in the context of existing risk assessments using the BE approach. Risk managers can use this approach to integrate the available biomonitoring data into an overall assessment of current risk management practices for 2,4-D.



Shealy et al., 1996

Shealy, Dana B., Bonin, Michael A., Wooten, Joe V., Ashley, David L., Needham, Larry L., & Bond, Andrew E.; “Application of an improved method for the analysis of pesticides and their metabolites in the urine of farmer applicators and their families;” Environment International, 1996, 22(6), 661-675; DOI: 10.1016/s0160-4120(96)00058-x.


As the annual use of pesticides in the United States has escalated, public health agencies have become increasingly concerned about chronic pesticide exposure. However, without reliable, accurate analytical methods for biological monitoring, low-level chronic exposures are often difficult to assess. A method for measuring simultaneously the urinary residues of as many as 20 pesticides has been significantly improved. The method uses a sample preparation which includes enzyme digestion, extraction, and chemical derivatization of the analytes. The derivatized analytes are measured by using gas chromatography coupled with isotope-dilution tandem mass spectrometry. The limits of detection of the modified method are in the high pg/L – low μg/L range, and the average coefficient of variation (CV) of the method was below 20% for most analytes, with approximately 100% accuracy in quantification. This method was used to measure the internal doses of pesticides among selected farmer applicators and their families. Definite exposure and elimination patterns (i.e., an increase in urinary analyte levels following application and then a gradual decrease to background levels) were observed among the farmer applicators and many of the family members whose crops were treated with carbaryl, dicamba, and 2,4-D esters and amines. Although the spouses of farm workers sometimes exhibited the same elimination pattern, the levels of the targeted pesticides or metabolites found in their urine were not outside the ranges found in the general U.S. population (reference range). The farmer applicators who applied the pesticides and some of their children appeared to have higher pesticide or metabolite levels in their urine than those found in the general U.S. population, but their levels were generally comparable to or lower than reported levels in other occupationally exposed individuals. These results, however, were obtained from a nonrandom sampling of farm residents specifically targeted to particular exposures who may have altered their practices because they were being observed; therefore, further study is required to determine if these results are representative of pesticide levels among residents on all farms where these pesticides are applied using the same application techniques. Using this method to measure exposure in a small nonrandom farm population allowed differentiation between overt and background exposure. In addition, the important role of reference-range information in distinguishing between various levels of environmental exposure was reaffirmed. FULL TEXT

Harris et al., 2010

Harris, S. A., Villeneuve, P. J., Crawley, C. D., Mays, J. E., Yeary, R. A., Hurto, K. A., & Meeker, J. D.; “National study of exposure to pesticides among professional applicators: an investigation based on urinary biomarkers;” Journal of Agricultural and Food Chemistry, 2010, 58(18), 10253-10261; DOI: 10.1021/jf101209g.


Epidemiologic studies of pesticides have been subject to important biases arising from exposure misclassification. Although turf applicators are exposed to a variety of pesticides, these exposures have not been well characterized. This paper describes a repeated measures study of 135 TruGreen applicators over three spraying seasons via the collection of 1028 urine samples. These applicators were employed in six cities across the United States. Twenty-four-hour estimates (mug) were calculated for the parent compounds 2,4-D, MCPA, mecoprop, dicamba, and imidacloprid and for the insecticide metabolites MPA and 6-CNA. Descriptive statistics were used to characterize the urinary levels of these pesticides, whereas mixed models were applied to describe the variance apportionment with respect to city, season, individual, and day of sampling. The contributions to the overall variance explained by each of these factors varied considerably by the type of pesticide. The implications for characterizing exposures in these workers within the context of a cohort study are discussed. FULL TEXT

Bohnenblust et al., 2016

Bohnenblust, E. W., Vaudo, A. D., Egan, J. F., Mortensen, D. A., & Tooker, J. F.; “Effects of the herbicide dicamba on nontarget plants and pollinator visitation;” Environmental Toxicology and Chemistry, 2016, 35(1), 144-151; DOI: 10.1002/etc.3169.


Nearly 80% of all pesticides applied to row crops are herbicides, and these applications pose potentially significant ecotoxicological risks to nontarget plants and associated pollinators. In response to the widespread occurrence of weed species resistant to glyphosate, biotechnology companies have developed crops resistant to the synthetic-auxin herbicides dicamba and 2,4-dichlorophenoxyacetic acid (2,4-D); and once commercialized, adoption of these crops is likely to change herbicide-use patterns. Despite current limited use, dicamba and 2,4-D are often responsible for injury to nontarget plants; but effects of these herbicides on insect communities are poorly understood. To understand the influence of dicamba on pollinators, the authors applied several sublethal, drift-level rates of dicamba to alfalfa (Medicago sativa L.) and Eupatorium perfoliatum L. and evaluated plant flowering and floral visitation by pollinators. The authors found that dicamba doses simulating particle drift (≈1% of the field application rate) delayed onset of flowering and reduced the number of flowers of each plant species; however, plants that did flower produced similar-quality pollen in terms of protein concentrations. Further, plants affected by particle drift rates were visited less often by pollinators. Because plants exposed to sublethal levels of dicamba may produce fewer floral resources and be less frequently visited by pollinators, use of dicamba or other synthetic-auxin herbicides with widespread planting of herbicide-resistant crops will need to be carefully stewarded to prevent potential disturbances of plant and beneficial insect communities in agricultural landscapes. FULL TEXT

Rydz et al., 2020

Rydz, C. E., Larsen, K., & Peters, C. E.; “Estimating Exposure to Three Commonly Used, Potentially Carcinogenic Pesticides (Chlorolathonil, 2,4-D, and Glyphosate) Among Agricultural Workers in Canada;” Annals of Work Exposures and Health, 2020; DOI: 10.1093/annweh/wxaa109.


OBJECTIVES: Certain pesticides have been associated with adverse health outcomes including cancer and reproductive harms. However, little is known about the prevalence of occupational pesticide exposure among agricultural workers in Canada. The purpose of this study was to estimate the prevalence and likelihood of occupational exposure to pesticides in Canada’s agricultural industry, using three commonly used, potentially carcinogenic pesticides [chlorothalonil, 2,4-dichlorophenoxyacetic acid (2,4-D), and glyphosate] as an example.

METHODS: Estimates were calculated using the Canadian Census of Population and the Census of Agriculture. The number of workers and the proportion of farms applying ‘herbicides’ or ‘fungicides’ by farm type was estimated using survey data from the Census of Agriculture. These values were multiplied to yield the potential number of workers at risk of exposure. Likelihood of exposure (i.e. exposed, probably exposed, and possibly exposed) was then qualitatively assigned using information on crop type, primary expected tasks, crop production practices, and residue transfer data. Additional agricultural workers who are at risk of exposure but not captured by the Census of Agriculture were identified using the 2016 Census of Population.

RESULTS: An estimated range of 37 700-55 800 workers (11-13% of agricultural workers) were exposed to glyphosate in Canada while 30 800-43 600 workers (9-11%) and 9000-14 100 (2.9-3.2%) were exposed to 2,4-D and chlorothalonil, respectively. Approximately 70-75% of workers at risk of exposure were considered probably or possibly exposed to any of the pesticides. Glyphosate exposure was most common among workers in oilseed (29% of oilseed farm workers exposed) and dry pea/bean farms (28%), along with those providing support activities for farms (31%). 2,4-D exposure was most common in corn (28%), other grain (28%), and soybean farms (27%), while chlorothalonil exposure was more likely among greenhouse, nursery, and floriculture workers (42%), workers on farms (28%, for occupations not captured by the Census of Agriculture, specifically), and those providing support activities for farms (20%). Regional variations broadly reflected differences in farm types by province.

CONCLUSIONS: This study estimated the prevalence of occupational exposure to three pesticides in Canada. Seasonal and temporary agricultural workers, which were captured by the Census of Agriculture, contributed to many additionally exposed workers. A large percent of the workers who were considered at risk of exposure were considered probably or possibly exposed, indicating a need for enhanced data collection and availability on pesticide use data in Canada. The study’s methods can be applied to estimate workers’ exposures to other pesticides within the agricultural industry.