Bibliography Tag: atrazine

Givens et al., 2017

Givens, Wade A., Shaw, David R., Johnson, William G., Weller, Stephen C., Young, Bryan G., Wilson, Robert G., Owen, Micheal D. K., & Jordan, David; “A Grower Survey of Herbicide Use Patterns in Glyphosate-Resistant Cropping Systems;” Weed Technology, 2017, 23(1), 156-161; DOI: 10.1614/wt-08-039.1.

ABSTRACT:

A telephone survey was conducted with growers in Iowa, Illinois, Indiana, Nebraska, Mississippi, and North Carolina to discern the utilization of the glyphosate-resistant (GR) trait in crop rotations, weed pressure, tillage practices, herbicide use, and perception of GR weeds. This paper focuses on survey results regarding herbicide decisions made during the 2005 cropping season. Less than 20% of the respondents made fall herbicide applications. The most frequently used herbicides for fall applications were 2,4-D and glyphosate, and these herbicides were also the most frequently used for preplant burndown weed control in the spring. Atrazine and acetochlor were frequently used in rotations containing GR corn. As expected, crop rotations using a GR crop had a high percentage of respondents that made one to three POST applications of glyphosate per year. GR corn, GR cotton, and non-GR crops had the highest percentage of growers applying nonglyphosate herbicides during the 2005 growing season. A crop rotation containing GR soybean had the greatest negative impact on non-glyphosate use. Overall, glyphosate use has continued to increase, with concomitant decreases in utilization of other herbicides. FULL TEXT


Boone et al., 2014

Boone, Michelle D., Bishop, Christine A., Boswell, Leigh A., Brodman, Robert D., Burger, Joanna, Davidson, Carlos, Gochfeld, Michael, Hoverman, Jason T., Neuman-Lee, Lorin A., Relyea, Rick A., Rohr, Jason R., Salice, Christopher, Semlitsch, Raymond D., Sparling, Donald, & Weir, Scott; “Pesticide Regulation amid the Influence of Industry;” BioScience, 2014, 64(10), 917-922; DOI: 10.1093/biosci/biu138.

ABSTRACT:

Pesticide use results in the widespread distribution of chemical contaminants, which necessites regulatory agencies to assess the risks to environmental and human health. However, risk assessment is compromised when relatively few studies are used to determine impacts, particularly if most of the data used in an assessment are produced by a pesticide’s manufacturer, which constitutes a conflict of interest. Here, we present the shortcomings of the US Environmental Protection Agency’s pesticide risk assessment process, using the recent reassessment of atrazine’s impacts on amphibians as an example. We then offer solutions to improve the risk assessment process, which would reduce the potential for and perception of bias in a process that is crucial for environmental and human health. FULL TEXT


Brehm and Flaws, 2019

Brehm, E., & Flaws, J. A.; “Transgenerational Effects of Endocrine-Disrupting Chemicals on Male and Female Reproduction;” Endocrinology, 2019, 160(6), 1421-1435; DOI: 10.1210/en.2019-00034.

ABSTRACT:

Endocrine-disrupting chemicals are known to interfere with normal reproductive function and hormone signaling. Phthalates, bisphenol A, pesticides, and environmental contaminants such as polychlorinated biphenyls and dioxins are known endocrine-disrupting chemicals that have been shown to negatively affect both male and female reproduction. Exposure to these chemicals occurs on a daily basis owing to these compounds being found in plastics, personal care products, and pesticides. Recently, studies have shown that these chemicals may cause transgenerational effects on reproduction in both males and females. This is of concern because exposure to these chemicals prenatally or during adult life can negatively impact the reproductive health of future generations. This mini-review summarizes the endocrine-disrupting chemicals that humans are exposed to on a daily basis and what is known about the transgenerational effects that these chemicals may have on male and female reproduction. FULL TEXT


Saldana et al., 2007

Saldana, T. M., Basso, O., Hoppin, J. A., Baird, D. D., Knott, C., Blair, A., Alavanja, M. C., & Sandler, D. P.; “Pesticide exposure and self-reported gestational diabetes mellitus in the Agricultural Health Study;” Diabetes Care, 2007, 30(3), 529-534; DOI: 10.2337/dc06-1832.

ABSTRACT:

OBJECTIVE: To examine the association between pesticide use during pregnancy and gestational diabetes mellitus (GDM) among wives of licensed pesticide applicators.

RESEARCH DESIGN AND METHODS: Using data from the Agricultural Health Study (AHS), we estimated the association between self-reported pesticide-related activities during the first trimester of the most recent pregnancy and GDM among 11,273 women whose pregnancy occurred within 25 years of enrollment.

RESULTS: A total of 506 (4.5%) women reported having had GDM. Women who reported agricultural pesticide exposure (mixing or applying pesticides to crops or repairing pesticide application equipment) during pregnancy were more likely to report GDM (odds ratio [OR] 2.2 [95% CI 1.5-3.3]). We saw no association between residential pesticide exposure (applying pesticides in the home and garden during pregnancy) and GDM (1.0 [0.8-1.3]). Among women who reported agricultural exposure during pregnancy, risk of GDM was associated with ever-use of four herbicides (2,4,5-T; 2,4,5-TP; atrazine; or butylate) and three insecticides (diazinon, phorate, or carbofuran).

CONCLUSIONS: These findings suggest that activities involving exposure to agricultural pesticides during the first trimester of pregnancy may increase the risk of GDM.

FULL TEXT


Curwin et al., 2007

Curwin, Brian D., Hein, Misty J., Sanderson, Wayne T., Striley, Cynthia, Heederik, Dick, Kromhout, Hans, Reynolds, Stephen J., & Alavanja, Michael C.; “Pesticide dose estimates for children of Iowa farmers and non-farmers;” Environmental Research, 2007, 105, 307-315; DOI: 10.1016/j.envres.2007.06.001.

ABSTRACT:

Farm children have the potential to be exposed to pesticides. Biological monitoring is often employed to assess this exposure; however, the significance of the exposure is uncertain unless doses are estimated. In the spring and summer of 2001, 118 children (66 farm, 52 non-farm) of Iowa farm and non-farm households were recruited to participate in a study investigating potential take-home pesticide exposure. Each child provided an evening and morning urine sample at two visits spaced approximately 1 month apart, with the first sample collection taken within a few days after pesticide application. Estimated doses were calculated for atrazine, metolachlor, chlorpyrifos, and glyphosate from urinary metabolite concentrations derived from the spot urine samples and compared to EPA reference doses. For all pesticides except glyphosate, the doses from farm children were higher than doses from the non-farm children. The difference was statistically significant for atrazine (p<0.0001) but only marginally significant for chlorpyrifos and metolachlor (p=0.07 and 0.1, respectively). Among farm children, geometric mean doses were higher for children on farms where a particular pesticide was applied compared to farms where that pesticide was not applied for all pesticides except glyphosate; results were significant for atrazine (p=0.030) and metolachlor (p=0.042), and marginally significant for chlorpyrifos (p=0.057). The highest estimated doses for atrazine, chlorpyrifos, metolachlor, and glyphosate were 0.085, 1.96, 3.16, and 0.34 μg/kg/day, respectively. None of the doses exceeded any of the EPA reference values for atrazine, metolachlor, and glyphosate; however, all of the doses for chlorpyrifos exceeded the EPA chronic population adjusted reference value. Doses were similar for male and female children. A trend of decreasing dose with increasing age was observed for chlorpyrifos. FULL TEXT


Curwin et al., 2002

Curwin, B., Sanderson, W., Reynolds, S., Hein, M., & Alavanja, M.; “Pesticide use and practices in an Iowa farm family pesticide exposure study;” Journal of Agricultural Safety and Health, 2002, 8(4), 423-433; DOI: 10.13031/2013.10222.

ABSTRACT:

Residents of Iowa were enrolled in a study investigating differences in pesticide contamination and exposure factors between 25 farm homes and 25 non-farm homes. The target pesticides investigated were atrazine, metolachlor, acetochlor, alachlor, 2,4-D, glyphosate, and chlorpyrifos; all were applied to either corn or soybean crops. A questionnaire was administered to all participants to determine residential pesticide use in and around the home. In addition, a questionnaire was administered to the farmers to determine the agricultural pesticides they used on the farm and their application practices. Non-agricultural pesticides were used more in and around farm homes than non-farm homes. Atrazine was the agricultural pesticide used most by farmers. Most farmers applied pesticides themselves but only 10 (59%) used tractors with enclosed cabs, and they typically wore little personal protective equipment (PPE). On almost every farm, more than one agricultural pesticide was applied. Corn was grown by 23 (92%) farmers and soybeans by 12 (48%) farmers. Of these, 10 (40%) grew both soybeans and corn, with only 2 (8%) growing only soybeans and 13 (52%) growing only corn. The majority of farmers changed from their work clothes and shoes in the home, and when they changed outside or in the garage, they usually brought their clothes and shoes inside. Applying pesticides using tractors with open cabs, not wearing PPE, and changing from work clothes in the home may increase pesticide exposure and contamination. Almost half of the 66 farm children less than 16 years of age were engaged in some form of farm chores, with 6 (9%) potentially directly exposed to pesticides, while only 2 (4%) of the 52 non-farm children less than 16 years of age had farm chores, and none were directly exposed to pesticides. Farm homes may be contaminated with pesticides in several ways, resulting in potentially more contamination than non-farm homes, and farm children may be directly exposed to pesticides through farm chores involving pesticides. In addition to providing a description of pesticide use, the data presented here will be useful in evaluating potential contributing factors to household pesticide contamination and family exposure. FULL TEXT


Curwin et al., 2005

Curwin, B. D., Hein, M. J., Sanderson, W. T., Nishioka, M. G., Reynolds, S. J., Ward, E. M., & Alavanja, M. C.; “Pesticide contamination inside farm and nonfarm homes;” Journal of Occupational and Environmental Hygiene, 2005, 2(7), 357-367; DOI: 10.1080/15459620591001606.

ABSTRACT:

Twenty-five farm (F) households and 25 nonfarm (NF) households in Iowa were enrolled in a study investigating agricultural pesticide contamination inside homes. Air, surface wipe, and dust samples were collected. Samples from 39 homes (20 F and 19 NF) were analyzed for atrazine, metolachlor, acetochlor, alachlor, and chlorpyrifos. Samples from 11 homes (5 F and 6 NF) were analyzed for glyphosate and 2,4-Dichlorophenoxyac etic acid (2,4-D). Greater than 88% of the air and greater than 74% of the wipe samples were below the limit of detection (LOD). Among the air and wipe samples, chlorpyrifos was detected most frequently in homes. In the dust samples, all the pesticides were detected in greater than 50% of the samples except acetochlor and alachlor, which were detected in less than 30% of the samples. Pesticides in dust samples were detected more often in farm homes except 2,4-D, which was detected in 100% of the farm and nonfarm home samples. The average concentration in dust was higher in farm homes versus nonfarm homes for each pesticide. Further analysis of the data was limited to those pesticides with at least 50% of the dust samples above the LOD. All farms that sprayed a pesticide had higher levels of that pesticide in dust than both farms that did not spray that pesticide and nonfarms; however, only atrazine and metolachlor were significantly higher. The adjusted geometric mean pesticide concentration in dust for farms that sprayed a particular pesticide ranged from 94 to 1300 ng/g compared with 12 to 1000 ng/g for farms that did not spray a particular pesticide, and 2.4 to 320 ng/g for nonfarms. The distributions of the pesticides throughout the various rooms sampled suggest that the strictly agricultural herbicides atrazine and metolachlor are potentially being brought into the home on the farmer’s shoes and clothing. These herbicides are not applied in or around the home but they appear to be getting into the home para-occupationally. For agricultural pesticides, take-home exposure may be an important source of home contamination. FULL TEXT


Hoppin et al., 2002

Hoppin, Jane A., Umbach, David M, London, Stephanie J., Alavanja, Michael, & Sandler, Dale P.; “Chemical Predictors of Wheeze among Farmer Pesticide Applicators in the Agricultural Health Study;” American Journal of Respiratory and Critical Care Medicine, 2002, 165, 683-689; DOI: 10.1164/rccm.2106074.

ABSTRACT:

Pesticides may contribute to respiratory symptoms among farmers. Using the Agricultural Health Study, a large cohort of certified pesticide applicators in Iowa and North Carolina, we explored the association between wheeze and pesticide use in the past year. Self-administered questionnaires contained items on 40 currently used pesticides and pesticide application practices. A total of 20,468 applicators, ranging in age from 16 to 88 years, provided complete information; 19% reported wheezing in the past year. Logistic regression models controlling for age, state, smoking, and history of asthma or atopy were used to evaluate associations between individual pesticides and wheeze. Among pesticides suspected to contribute to wheeze, paraquat, three organophosphates (parathion, malathion, and chlorpyrifos), and one thiocarbamate (S-ethyl-dipropylthiocarbamate [EPTC]) had elevated odds ratios (OR). Parathion had the highest OR (1.5, 95% confidence interval [CI] 1.0, 2.2).

Chlorpyrifos, EPTC, paraquat, and parathion demonstrated significant dose–response trends. The herbicides, atrazine and alachlor, but not 2,4-D, were associated with wheeze. Atrazine had a significant dose–response trend with participants applying atrazine more than 20 days/year having an OR of 1.5 (95% CI 1.2,1.9). Inclusion of crops and animals into these models did not significantly alter the observed OR. These associations, though small, suggest an independent role for specific pesticides in respiratory symptoms of farmers. FULL TEXT


Zuanazzi et al., 2020

Zuanazzi, N. R., Ghisi, N. C., & Oliveira, E. C.; “Analysis of global trends and gaps for studies about 2,4-D herbicide toxicity: A scientometric review;” Chemosphere, 2020, 241, 125016; DOI: 10.1016/j.chemosphere.2019.125016.

ABSTRACT:

2,4-dichlorophenoxyacetic acid (2,4-D) is a herbicide that is used worldwide in agricultural and urban activities to control pests, reaching natural environments directly or indirectly. The research on 2,4-D toxicology and mutagenicity has advanced rapidly, and for this reason, this review summarizes the available data in Web of Science (WoS) to provide insights into the specific characteristics of 2,4-D toxicity and mutagenicity. Contrary to traditional reviews, this study uses a new method to quantitatively visualize and summarize information about the development of this field. Among all countries, the USA was the most active contributor with the largest publication and centrality, followed by Canada and China. The WoS categories ‘Toxicology’ and ‘Biochemical and Molecular Biology’ were the areas of greatest influence. 2,4-D research was strongly related to the keywords glyphosate, atrazine, water and gene expression. The studies trended to be focused on occupational risk, neurotoxicity, resistance or tolerance to herbicides, and to non-target species (especially aquatic ones) and molecular imprinting. In general, the authors have worked collaboratively, with concentrated efforts, allowing important advances in this field. Future research on 2,4-D toxicology and mutagenicity should probably focus on molecular biology, especially gene expression, assessment of exposure in human or other vertebrate bioindicators, and pesticide degradation studies. In summary, this scientometric analysis allowed us to make inferences about global trends in 2,4-D toxicology and mutagenicity, in order to identify tendencies and gaps and thus contribute to future research efforts.

FULL TEXT


Wang et al., 2020

Wang, G. H., Berdy, B. M., Velasquez, O., Jovanovic, N., Alkhalifa, S., Minbiole, K. P. C., & Brucker, R. M.; “Changes in Microbiome Confer Multigenerational Host Resistance after Sub-toxic Pesticide Exposure;” Cell Host & Microbe, 2020; DOI: 10.1016/j.chom.2020.01.009.

ABSTRACT:

The gut is a first point of contact with ingested xenobiotics, where chemicals are metabolized directly by the host or microbiota. Atrazine is a widely used pesticide, but the role of the microbiome metabolism of this xenobiotic and the impact on host responses is unclear. We exposed successive generations of the wasp Nasonia vitripennis to subtoxic levels of atrazine and observed changes in the structure and function of the gut microbiome that conveyed atrazine resistance. This microbiome-mediated resistance was maternally inherited and increased over successive generations, while also heightening the rate of host genome selection. The rare gut bacteria Serratia marcescens and Pseudomonas protegens contributed to atrazine metabolism. Both of these bacteria contain genes that are linked to atrazine degradation and were sufficient to confer resistance in experimental wasp populations. Thus, pesticide exposure causes functional, inherited changes in the microbiome that should be considered when assessing xenobiotic exposure and as potential countermeasures to toxicity. FULL TEXT