Bibliography Tag: cancer

EPA, 2015b

Environmental Protection Agency, “Evaluation of the Carcinogenic Potential of Glyphosate Case No. 1071-83-6 .” Office of Chemical Safety and Pollution Prevention, October 1, 2015.

ABSTRACT:

On September 16, 2015, the Cancer Assessment Review Committee (CARC) of the Health
Effects Division, of the Office of Pesticide Programs evaluated the carcinogenic potential of
Glyphosate in accordance with the EPA ‘s Final Guidelines for Carcinogen Risk Assessment
(March, 2005). Attached please find the final Cancer Assessment Document.

FULL TEXT


Rezende et al., 2021

Rezende, E.C.N., Carneiro, F.M., de Moraes, J.B. et al. “Trends in science on glyphosate toxicity: a scientometric study.” Environmental Science and Pollution Research 28, 56432–56448 (2021). DOI: 10.1007/s11356-021-14556-4

ABSTRACT:

As part of the most used herbicides, glyphosate is the most successful ingredient of agrochemical companies. The main objective of this study was to demonstrate research trends related to the glyphosate toxicity and its main effects on human and environmental health. For this purpose, 443 articles published, from 1995 to 2020, on the platform Web of Science™ Thomson Reuters were selected. The main toxicity results related in literature are genotoxicity, cytotoxicity, and endocrine disruption. The environmental effects come mostly from the contamination of groundwater and soils. Several studies have concluded that herbicide concentrations right below the official safety limits induced toxic effects. The results presented a highlighted harmful effect of glyphosate on both human and environmental health. It has been observed that countries where publish the most about the glyphosate toxicity are great investors in large-scale agriculture. It is important to ponder that these countries are in a route of ecosystem exploitation that includes not only fauna and flora, but also human beings. Unfortunately, science does not provide concise data for these pesticide disapproval in the global consumer market. It is necessary to search sustainable global interest alternatives to increase agriculture production based on peoples’ food sovereignty. FULL TEXT


Mesnage et al., 2021D

Robin Mesnage, Mariam Ibragim, Daniele Mandrioli, Laura Falcioni, Eva Tibaldi, Fiorella Belpoggi, Inger Brandsma, Emma Bourne, Emanuel Savage, Charles A Mein, Michael N Antoniou; “Comparative Toxicogenomics of Glyphosate and Roundup Herbicides by Mammalian Stem Cell-Based Genotoxicity Assays and Molecular Profiling in Sprague-Dawley Rats”, Toxicological Sciences, 2021; DOI: 10.1093/toxsci/kfab143.

ABSTRACT:

Whether glyphosate-based herbicides (GBHs) are more potent than glyphosate alone at activating cellular mechanisms, which drive carcinogenesis remain controversial. As GBHs are more cytotoxic than glyphosate, we reasoned they may also be more capable of activating carcinogenic pathways. We tested this hypothesis by comparing the effects of glyphosate with Roundup GBHs both in vitro and in vivo. First, glyphosate was compared with representative GBHs, namely MON 52276 (European Union), MON 76473 (United Kingdom), and MON 76207 (United States) using the mammalian stem cell-based ToxTracker system. Here, MON 52276 and MON 76473, but not glyphosate and MON 76207, activated oxidative stress and unfolded protein responses. Second, molecular profiling of liver was performed in female Sprague-Dawley rats exposed to glyphosate or MON 52276 (at 0.5, 50, and 175 mg/kg bw/day glyphosate) for 90 days. MON 52276 but not glyphosate increased hepatic steatosis and necrosis. MON 52276 and glyphosate altered the expression of genes in liver reflecting TP53 activation by DNA damage and circadian rhythm regulation. Genes most affected in liver were similarly altered in kidneys. Small RNA profiling in liver showed decreased amounts of miR-22 and miR-17 from MON 52276 ingestion. Glyphosate decreased miR-30, whereas miR-10 levels were increased. DNA methylation profiling of liver revealed 5727 and 4496 differentially methylated CpG sites between the control and glyphosate and MON 52276 exposed animals, respectively. Apurinic/apyrimidinic DNA damage formation in liver was increased with glyphosate exposure. Altogether, our results show that Roundup formulations cause more biological changes linked with carcinogenesis than glyphosate. FULL TEXT


Malagoli et al., 2016

Malagoli, C., Costanzini, S., Heck, J. E., Malavolti, M., De Girolamo, G., Oleari, P., Palazzi, G., Teggi, S., & Vinceti, M.; “Passive exposure to agricultural pesticides and risk of childhood leukemia in an Italian community;” International Journal of Hygiene and Environmental Health, 2016, 219(8), 742-748; DOI: 10.1016/j.ijheh.2016.09.015.

ABSTRACT:

BACKGROUND: Exposure to pesticides has been suggested as a risk factor for childhood leukemia, but definitive evidence on this relation and the specific pesticides involved is still not clear.

OBJECTIVE: We carried out a population-based case-control study in a Northern Italy community to assess the possible relation between passive exposure to agricultural pesticides and risk of acute childhood leukemia.

METHODS: We assessed passive pesticide exposure of 111 childhood leukemia cases and 444 matched controls by determining density and type of agricultural land use within a 100-m radius buffer around children’s homes. We focused on four common crop types, arable, orchard, vineyard and vegetable, characterized by the use of specific pesticides that are potentially involved in childhood induced leukemia. The use of these pesticides was validated within the present study. We computed the odds ratios (OR) of the disease and their 95% confidence intervals (CI) according to type and density of crops around the children’s homes, also taking into account traffic pollution and high-voltage power line magnetic field exposure.

RESULTS: Childhood leukemia risk did not increase in relation with any of the crop types with the exception of arable crops, characterized by the use of 2.4-D, MCPA, glyphosate, dicamba, triazine and cypermethrin. The very few children (n=11) residing close to arable crops had an OR for childhood leukemia of 2.04 (95% CI 0.50-8.35), and such excess risk was further enhanced among children aged <5 years.

CONCLUSIONS: Despite the null association with most crop types and the statistical imprecision of the estimates, the increased leukemia risk among children residing close to arable crops indicates the need to further investigate the involvement in disease etiology of passive exposure to herbicides and pyrethroids, though such exposure is unlikely to play a role in the vast majority of cases. FULL TEXT

 


Smith et al., 2017

Smith, A. M., Smith, M. T., La Merrill, M. A., Liaw, J., & Steinmaus, C.; “2,4-dichlorophenoxyacetic acid (2,4-D) and risk of non-Hodgkin lymphoma: a meta-analysis accounting for exposure levels;” Annals of Epidemiology, 2017, 27(4), 281-289 e284; DOI: 10.1016/j.annepidem.2017.03.003.

ABSTRACT:

2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the most commonly used selective herbicides in the world. A number of epidemiology studies have found an association between 2,4-D exposure and non-Hodgkin lymphoma (NHL) but these results are inconsistent and controversial. A previous meta-analysis found no clear association overall but did not specifically examine high-exposure groups. We conducted a systematic review and meta-analysis of the peer-reviewed epidemiologic studies of the associations between 2,4-D and NHL, with a particular focus on high-exposure groups, and evaluations of heterogeneity, dose-response, and bias. A total of 12 observational studies, 11 case-control studies, and one cohort study, were included. The summary relative risk for NHL using study results comparing subjects who were ever versus never exposed to 2,4-D was 1.38 (95% confidence interval (CI), 1.07-1.77). However, in analyses focusing on results from highly exposed groups, the summary relative risk for NHL was 1.73 (95% CI, 1.10-2.72). No clear bias based on study design, exposure assessment methodology, or outcome misclassification was seen. Overall, these findings provide new evidence for an association between NHL and exposure to the herbicide 2,4-D. FULL TEXT

 


Ledda et al., 2021

Ledda C, Cannizzaro E, Cinà D, Filetti V, Vitale E, Paravizzini G, Di Naso C, Iavicoli I, Rapisarda V. “Oxidative stress and DNA damage in agricultural workers after exposure to pesticides.” Journal of Occupational Medicine and Toxicology. 2021 Jan 7;16(1):1. DOI: 10.1186/s12995-020-00290-z.

ABSTRACT:

BACKGROUND: Recent epidemiological studies on workers describe that exposure to pesticides can induce oxidative stress by increased production of free radicals that can accumulate in the cell and damage biological macromolecules, for example, RNA, DNA, DNA repair proteins and other proteins and/or modify antioxidant defense mechanisms, as well as detoxification and scavenger enzymes. This study aimed to assess oxidative stress and DNA damage among workers exposed to pesticides.

METHODS: For this purpose, 52 pesticide exposed workers and 52 organic farmers were enrolled. They were assessed: the pesticide exposure, thiobarbituric acid reactive substances (TBARS), total glutathione (TG), oxidized glutathione levels (GSSG), and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), levels.

RESULTS: Correlation between pesticide exposure was positively associated with high TBARS and 8-oxodG levels (p < 0.001). A negative association was founded with TG and GSSG and pesticide exposure.

CONCLUSIONS: The present investigation results seem to indicate a mild augment in oxidative stress associated with pesticide exposure, followed by an adaptive response to increase the antioxidant defenses to prevent sustained oxidative adverse effects stress. FULL TEXT


Mnif et al., 2011

Mnif W, Hassine AI, Bouaziz A, Bartegi A, Thomas O, Roig B. “Effect of endocrine disruptor pesticides: a review.” International Journal of Environmental Research and Public Health. 2011 Jun;8(6):2265-303. DOI: 10.3390/ijerph8062265.

ABSTRACT: Endocrine disrupting chemicals (EDC) are compounds that alter the normal functioning of the endocrine system of both wildlife and humans. A huge number of chemicals have been identified as endocrine disruptors, among them several pesticides. Pesticides are used to kill unwanted organisms in crops, public areas, homes and gardens, and parasites in medicine. Human are exposed to pesticides due to their occupations or through dietary and environmental exposure (water, soil, air). For several years, there have been enquiries about the impact of environmental factors on the occurrence of human pathologies. This paper reviews the current knowledge of the potential impacts of endocrine disruptor pesticides on human health. FULL TEXT


Franke et al., 2021

Franke, Adrian A., Li, Xingnan, Shvetsov, Yurii B., & Lai, Jennifer F.; “Pilot study on the urinary excretion of the glyphosate metabolite aminomethylphosphonic acid and breast cancer risk: The Multiethnic Cohort study;” Environmental Pollution, 2021, 277, 116848; DOI: https://doi.org/10.1016/j.envpol.2021.116848.

ABSTRACT:

Breast cancer is the most commonly diagnosed female cancer and the second leading cause of death in women in the US, including Hawaii. Accumulating evidence suggests that aminomethylphosphonic acid (AMPA), the primary metabolite of the herbicide glyphosate—a probable human carcinogen, may itself be carcinogenic. However, the relationship between urinary AMPA excretion and breast cancer risk in women is unknown. In this pilot study, we investigated the association between pre-diagnostic urinary AMPA excretion and breast cancer risk in a case-control study of 250 predominantly postmenopausal women: 124 cases and 126 healthy controls (individually matched on age, race/ethnicity, urine type, date of urine collection, and fasting status) nested within the Hawaii biospecimen subcohort of the Multiethnic Cohort. AMPA was detected in 90% of cases and 84% of controls. The geometric mean of urinary AMPA excretion was nearly 38% higher among cases vs. controls (0.087 vs 0.063 ng AMPA/mg creatinine) after adjusting for race/ethnicity, age and BMI. A 4.5-fold higher risk of developing breast cancer in the highest vs. lowest quintile of AMPA excretion was observed (ORQ5 vs. Q1: 4.49; 95% CI: 1.46–13.77; ptrend = 0.029). To our knowledge, this is the first study to prospectively examine associations between urinary AMPA excretion and breast cancer risk. Our preliminary findings suggest that AMPA exposure may be associated with increased breast cancer risk; however, these results require confirmation in a larger population to increase study power and permit careful examinations of race/ethnicity differences.


Alavanja et al., 2004

Alavanja, M. C., Hoppin, J. A., & Kamel, F.; “Health effects of chronic pesticide exposure: cancer and neurotoxicity;” Annual review of public health, 2004, 25, 155-197; DOI: 10.1146/annurev.publhealth.25.101802.123020.

ABSTRACT:

Pesticides are widely used in agricultural and other settings, resulting in continuing human exposure. Epidemiologic studies indicate that, despite premarket animal testing, current exposures are associated with risks to human health. In this review, we describe the routes of pesticide exposures occurring today, and summarize and evaluate the epidemiologic studies of pesticide-related carcinogenicity and neurotoxicity in adults. Better understanding of the patterns of exposure, the underlying variability within the human population, and the links between the animal toxicology data and human health effects will improve the evaluation of the risks to human health posed by pesticides. Improving epidemiology studies and integrating this information with toxicology data will allow the human health risks of pesticide exposure to be more accurately judged by public health policy makers. FULL TEXT


Blair et al., 1985

Blair, A., Malker, H., Cantor, K. P., Burmeister, L., & Wiklund, K.; “Cancer among farmers. A review;” Scandinavian Journal of Work, Environment, & Health, 1985, 11(6), 397-407; DOI: 10.5271/sjweh.2208.

ABSTRACT:

During the performance of routine tasks farmers may come in contact with a variety of substances, including pesticides, solvents, oils and fuels, dusts, paints, welding fumes, zoonotic viruses, microbes, and fungi. Because some of these substances are known or suspected carcinogens, the epidemiologic literature regarding cancer risks concerning farmers has been reviewed. Farmers had consistent deficits for cancers of the colon, rectum, liver, and nose. The deficits for cancer of the lung and bladder were particularly striking, presumably due to less frequent use of tobacco among farmers than among people in many other occupational groups. Malignancies frequently showing excesses among farmers included Hodgkin’s disease, leukemia, non-Hodgkin’s lymphoma, multiple myeloma, and cancers of the lip, stomach, prostate, skin (nonmelanotic), brain, and connective tissues. The etiologic factors that may contribute to these excesses in the agricultural environment have not been identified. Detailed, analytic epidemiologic studies that incorporate environmental and biochemical monitoring are needed to clarify these associations. FULL TEXT