Bibliography Tag: chlorpyrifos

Moore et al., 2014

Moore, C. A., Wilkinson, S. C., Blain, P. G., Dunn, M., Aust, G. A., & Williams, F. M.; “Percutaneous absorption and distribution of organophosphates (chlorpyrifos and dichlorvos) following dermal exposure and decontamination scenarios using in vitro human skin model;” Toxicology Letters, 2014, 229(1), 66-72; DOI: 10.1016/j.toxlet.2014.06.008.

ABSTRACT:

To date, there has been little research investigating low-level human exposure to chemicals, and so the aim of this study was to examine the percutaneous penetration of organophosphates (dichlorvos and chlorpyrifos) using low-level exposure scenarios in vitro. Dermal absorption of chlorpyrifos applied in different vehicles was measured at 0, 4, 8 and 24 h, after dose application for 4 and 24 h exposure (finite dose, 500 ng/cm(2)) in isopropanol (IPA), isopropyl myristate (IPM) and propylene glycol (PG). Dichlorvos was applied to the skin for 24 h (infinite dose, 1 mg/cm(2) and 10 mg/cm(2); finite dose, 5 mug/cm(2)) using the same vehicles. Human skin was mounted in flow through diffusion cells with minimum essential medium eagle pH 7.4 (supplemented with 2% BSA) as receptor fluid. Following exposure, the skin surface dose was removed by tissue swabbing, the stratum corneum removed by sequential tape stripping, and the skin digested prior to scintillation counting (chlorpyrifos), or GC/MS analysis (dichlorvos). The dermal absorption of chlorpyrifos was the greatest following application in PG (19.5% of dose), when compared with absorption from the IPA and IPM vehicles (10.3% and 1.9% absorbed respectively). However, dichlorvos showed greater dermal absorption than chlorpyrifos from all vehicles used, with greatest absorption from the IPA vehicle (38.6% absorbed). Although dichlorvos exhibited a short lag time (0.6 h from IPA and IP vehicles, and 0.4 h from PG), chlorpyrifos displayed greater propensity to accumulate in the stratum corneum and epidermis/dermis. These results demonstrate that prompt skin surface decontamination would be required for both dichlorvos and chlorpyrifos (and chemicals with similar properties) in the event of skin contact. The magnitude of the skin reservoir formed with chlorpyrifos was time dependent, therefore, prompt decontamination of this and similar chemicals would be required to reduce delayed systemic absorption.


Geer et al., 2004

Geer, L. A., Cardello, N., Dellarco, M. J., Leighton, T. J., Zendzian, R. P., Roberts, J. D., & Buckley, T. J.; “Comparative analysis of passive dosimetry and biomonitoring for assessing chlorpyrifos exposure in pesticide workers;” Annals of Occupational Hygeine, 2004, 48(8), 683-695; DOI: 10.1093/annhyg/meh056.

ABSTRACT:

Under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), the US Environmental Protection Agency (EPA) has the authority to regulate the use of pesticides to prevent unreasonable adverse human health effects associated with pesticide exposure. Accordingly, the EPA requires pesticide registrants to perform studies evaluating the potential for pesticide handler exposure. Data from five such studies that included exposure measurements based on both external measurements and biological monitoring were used to examine methods of assessment, routes and determinants of exposure and dose to the pesticide chlorpyrifos. Eighty workers across four job classes were included: mixer/loaders (M/L, n = 24), mixer/loader/applicators (M/L/A, n = 37), applicators (A, n = 9) and re-entry scouts (RS, n = 10). Results showed that doses were highly variable and differed by job class (P < 0.05) with median total (inhalation and dermal combined) exposure-derived absorbed doses (EDADtot) of 129, 88, 85 and 45 microg/application for A, M/L/A, M/L and RS, respectively. Doses derived from the measurement of 3,5,6-trichloro- 2-pyridinol (3,5,6-TCP) in urine were similar in magnitude but differed in rank with median values of 275, 189, 122 and 97 microg/application for A, M/L, RS, and M/L/A, respectively. The relative contribution of dermal to inhalation exposure was examined by their ratio. The median ratios of exposure-derived absorbed dermal dose (EDADderm) (assuming 3% absorption) to exposure-derived absorbed inhalation dose (EDADinh) (assuming 100% absorption) across job classes were 1.7, 1.5, 0.44 and 0.18 for RS, M/L, A and M/L/A, respectively, with an overall median of 0.6. For 34 of 77 workers (44%), this ratio exceeded 1.0, indicating the significance of the dermal exposure pathway. Different dermal absorption factor (DAF) assumptions were examined by comparing EDADtot to the biomarker-derived absorbed dose (BDAD) as a ratio where EDADtot was calculated assuming a DAF of 1, 3 and 10%. Median ratios of 0.45, 0.71 and 1.28, respectively, were determined suggesting the DAF is within the range of 3-10%. A simple linear regression of urinary 3,5,6-TCP against EDADtot indicates a positive association explaining 29% of the variability in the 3,5,6-TCP derived estimate of dose. A multiple linear regression model including the variables EDADderm, EDADinh and application type explained 46% of the variability (R2 = 0.46) in the urinary dose estimate. EDADderm was marginally significant (P = 0.066) while EDADinh was not (P = 0.57). The EDADderm regression coefficient (0.0007) exceeded the coefficient for EDADinh (0.00002) by a factor of 35. This study demonstrates the value of the pesticide registrant database for the purpose of evaluating pesticide worker exposure. It highlights the significance of the dermal exposure pathway, and identifies the need for methods and research to close the gap between external and internal exposure measures. FULL TEXT


Meuling et al., 2005

Meuling, W. J., Ravensberg, L. C., Roza, L., & van Hemmen, J. J.; “Dermal absorption of chlorpyrifos in human volunteers;” International Archives of Occupational and Environmental Health, 2005, 78(1), 44-50; DOI: 10.1007/s00420-004-0558-6.

ABSTRACT:

OBJECTIVE: The methods and results are described of a study on the dermal absorption of chlorpyrifos (CPF) in humans established via urinary excretion of the metabolite 3,5,6-trichloro-2-pyridinol (TCP).

METHODS: Two dermal, single, doses of CPF were applied in two study groups (A and B) each comprising three apparently healthy male volunteers who gave their written informed consent. The clinical part of the study was conducted in compliance with the ICH Guideline and the EC principles of good clinical practice (GCP). An approximately 0.5 ml dilution of CPF in ethanol was applied to an area of approximately 100 cm(2) of the volar aspect of the forearm, resulting in doses of either 5 mg (A) or 15 mg (B) of CPF per study subject. Duration of dermal exposure was 4 h, after which the non-absorbed fraction was washed off. The following samples were collected at pre-determined intervals for the determination of either CPF or its metabolite TCP: dosing solutions, wash-off fractions and urine samples collected up to 120 h after dosing.

RESULTS: A relatively large fraction of CPF (42%-67% of the applied dose) was washed off from the exposed skin area. Application of either 5 mg (A) or 15 mg CPF (B) resulted in the total urinary excretion of 131.8 microg (A) or 115.6 microg (B) of TCP 120 h after dosing. This indicated that 4.3% of the applied dose has been absorbed (A), while in group (B) no significant increase in urinary TCP (115.6 microg) was established. The latter indicates that an increase in the dermal dose at a fixed area does not increase absorption, which suggests that the percutaneous penetration rate was constant. Further, it was observed that the clearance of CPF by the body was not completed within 120 h, suggesting that CPF or TCP was retained by the skin and/or accumulated in the body. A mean elimination half-life of 41 h was established.

CONCLUSION: The results show that daily occupational exposure to CPF may result in accumulation of CPF and/or its metabolites, possibly resulting in adverse effects. FULL TEXT

 


Linhart et al., 2021

Linhart, Caroline, Panzacchi, Simona, Belpoggi, Fiorella, Clausing, Peter, Zaller, Johann G., & Hertoge, Koen; “Year-round pesticide contamination of public sites near intensively managed agricultural areas in South Tyrol;” Environmental Sciences Europe, 2021, 33(1); DOI: 10.1186/s12302-020-00446-y.

ABSTRACT:

BACKGROUND: In a previous study, we found that 45% of public playgrounds near intensively managed agricultural areas were contaminated with mainly endocrine active pesticide residues in spring. Here, we investigated potential contamination over the course of a year.

METHODS: Residue data were analyzed from 96 grass samples collected in spring, summer, autumn, and winter by the South Tyrolean Medical Service in 19 public playgrounds, four schoolyards, and one marketplace located within intensively managed agricultural landscapes. Samples were analyzed for 281 substances using gas-chromatography and mass-spectrometry.

RESULTS: A total of 32 pesticide residues and one preservative agent were found. Almost all of the sites (96%) were contaminated with at least one residue during the year; in 79% of the sites, more than one residue was found. Among the detected residues, 76% are classified as endocrine active substances, with the highest concentrations of the insecticide chlorpyrifos-methyl (0.71 mg kg−1), the herbicide oxadiazon (0.64 mg kg−1), and the fungicides captan (0.46 mg kg−1) and fluazinam (0.23 mg kg−1). The number of residues, their concentrations, and the proportion of contaminated sites varied across seasons (p < 0.001). Twenty-five residues were found in 83% of the sites in spring (median concentration 0.240 mg kg−1), nine in 79% of the sites in summer (0.092 mg kg−1), three in 50% of the sites in autumn (0.076 mg kg−1), and four in 17% of the sites in winter (0.155 mg kg−1). Playgrounds already examined in 2017 in the previous study, were more often contaminated with multiple pesticide residues in 2018 (p = 0.045).

CONCLUSION: This study confirms previous findings of widespread pesticide contamination of public sites within intensively managed agricultural areas. Moreover, pesticide residues were also found in periods with little or no pesticide application in the field (autumn and winter). It is worrisome that many of the detected residues are endocrine active substances and that some of them (thiacloprid, bupirimate, captan, folpet) are “suspected human carcinogens”, according to EU authorities. Thus, we call for more effective controls of pesticide applications to minimize pesticide drift into public places. FULL TEXT


Sheppard et al., 2020

Sheppard, L., McGrew, S., & Fenske, R. A.; “Flawed analysis of an intentional human dosing study and its impact on chlorpyrifos risk assessments;” Environment International, 2020, 143, 105905; DOI: 10.1016/j.envint.2020.105905.

ABSTRACT:

In March 1972, Frederick Coulston and colleagues at the Albany Medical College reported results of an intentional chlorpyrifos dosing study to the study’s sponsor, Dow Chemical Company. Their report concluded that 0.03 mg/kg-day was the chronic no-observed-adverse-effect-level (NOAEL) for chlorpyrifos in humans. We demonstrate here that a proper analysis by the original statistical method should have found a lower NOAEL (0.014 mg/kg-day), and that use of statistical methods first available in 1982 would have shown that even the lowest dose in the study had a significant treatment effect. The original analysis, conducted by Dow-employed statisticians, did not undergo formal peer review; nevertheless, EPA cited the Coulston study as credible research and kept its reported NOAEL as a point of departure for risk assessments throughout much of the 1980’s and 1990’s. During that period, EPA allowed chlorpyrifos to be registered for multiple residential uses that were later cancelled to reduce potential health impacts to children and infants. Had appropriate analyses been employed in the evaluation of this study, it is likely that many of those registered uses of chlorpyrifos would not have been authorized by EPA. This work demonstrates that reliance by pesticide regulators on research results that have not been properly peer-reviewed may needlessly endanger the public. FULL TEXT


Alavanja et al., 2004

Alavanja, M. C., Dosemeci, M., Samanic, C., Lubin, J., Lynch, C. F., Knott, C., Barker, J., Hoppin, J. A., Sandler, D. P., Coble, J., Thomas, K., & Blair, A.; “Pesticides and lung cancer risk in the agricultural health study cohort;” American Journal of Epidemiology, 2004, 160(9), 876-885; DOI: 10.1093/aje/kwh290.

ABSTRACT:

The authors examined the relation between 50 widely used agricultural pesticides and lung cancer incidence in the Agricultural Health Study, a prospective cohort study of 57,284 pesticide applicators and 32,333 spouses of farmer applicators with no prior history of lung cancer. Self-administered questionnaires were completed at enrollment (1993-1997). Cancer incidence was determined through population-based cancer registries from enrollment through December 31, 2001. A lung cancer standardized incidence ratio of 0.44 (95% confidence interval: 0.39, 0.49) was observed overall, due in large part to a low cigarette smoking prevalence. Two widely used herbicides, metolachlor and pendimethalin (for low-exposed groups to four higher exposure categories: odds ratio (OR) = 1.0, 1.6, 1.2, 5.0; p(trend) = 0.0002; and OR = 1.0, 1.6, 2.1, 4.4; p(trend) = 0.003, respectively), and two widely used insecticides, chlorpyrifos and diazinon (OR = 1.0, 1.1, 1.7, 1.9; p(trend) = 0.03; and OR = 1.0, 1.6, 2.7, 3.7; p(trend) = 0.04, respectively), showed some evidence of exposure response for lung cancer. These excesses could not be explained by previously identified lung cancer risk factors. The usage levels in this cohort are considerably higher than those typically experienced by the general population. An excess risk among spouses directly exposed to pesticides could not be evaluated at this time. FULL TEXT


Zhao et al., 2016

Zhao, Y., Zhang, Y., Wang, G., Han, R., & Xie, X.; “Effects of chlorpyrifos on the gut microbiome and urine metabolome in mouse (Mus musculus);” Chemosphere, 2016, 153, 287-293; DOI: 10.1016/j.chemosphere.2016.03.055.

ABSTRACT:

In this study, the toxic effects of chlorpyrifos (CPF) on the gut microbiome and related urine metabolome in mouse (Mus musculus) were investigated. Mice were exposed to a daily dose of 1 mg kg(-1) bodyweight of CPF for 30 d. As a result, CPF significantly altered the gut microbiota composition in terms of the relative abundance of key microbes. Meanwhile, CPF exposure induced the alterations of urine metabolites related to the metabolism of amino acids, energy, short-chain fatty acids (SCFAs), phenyl derivatives and bile acids. High correlations were observed between perturbed gut microbiome and altered metabolic profiles. These perturbations finally resulted in intestinal inflammation and abnormal intestinal permeability, which were also confirm by the histologic changes in colon and remarkable increase of lipopolysaccharide (LPS) and diamine oxidase (DAO) in the serum of CPF-treated mice. Our findings will provide a new perspective to reveal the mechanism of CPF toxicity. FULL TEXT


Ruden and Grandjean, 2018

Mie, A., Ruden, C., & Grandjean, P.; “Safety of Safety Evaluation of Pesticides: developmental neurotoxicity of chlorpyrifos and chlorpyrifos-methyl;” Environmental Health, 2018, 17(1), 77; DOI: 10.1186/s12940-018-0421-y.

ABSTRACT:

Authorization of pesticides for market release requires toxicity testing on animals, typically performed by test laboratories on contract with the pesticide producer. The latter provides the results and summary to the regulatory authorities. For the commonly used pesticide chlorpyrifos, an industry-funded toxicity study concludes that no selective effects on neurodevelopment occur even at high exposures. In contrast, the evidence from independent studies points to adverse effects of current exposures on cognitive development in children. We reviewed the industry-funded developmental neurotoxicity test data on chlorpyrifos and the related substance chlorpyrifos-methyl. We noted treatment-related changes in a brain dimension measure for chlorpyrifos at all dose levels tested, although not been reported in the original test summary. We further found issues which inappropriately decrease the ability of the studies to reveal true effects, including a dosage regimen that resulted in too low exposure of the nursing pups for chlorpyrifos and possibly for chlorpyrifos-methyl, and a failure to detect any neurobehavioral effects of lead nitrate used as positive control in the chlorpyrifos study. Our observations thus suggest that conclusions in test reports submitted by the producer may be misleading. This discrepancy affects the ability of regulatory authorities to perform a valid and safe evaluation of these pesticides. The difference between raw data and conclusions in the test reports indicates a potential existence of bias that would require regulatory attention and possible resolution. FULL TEXT


Berkowitz et al., 2004

Berkowitz, G. S., Wetmur, J. G., Birman-Deych, E., Obel, J., Lapinski, R. H., Godbold, J. H., Holzman, I. R., & Wolff, M. S.; “In utero pesticide exposure, maternal paraoxonase activity, and head circumference;” Environmental Health Perspectives, 2004, 112(3), 388-391; DOI: 10.1289/ehp.6414.

ABSTRACT:

Although the use of pesticides in inner-city homes of the United States is of considerable magnitude, little is known about the potentially adverse health effects of such exposure. Recent animal data suggest that exposure to pesticides during pregnancy and early life may impair growth and neurodevelopment in the offspring. To investigate the relationship among prenatal pesticide exposure, paraoxonase (PON1) polymorphisms and enzyme activity, and infant growth and neurodevelopment, we are conducting a prospective, multiethnic cohort study of mothers and infants delivered at Mount Sinai Hospital in New York City. In this report we evaluate the effects of pesticide exposure on birth weight, length, head circumference, and gestational age among 404 births between May 1998 and May 2002. Pesticide exposure was assessed by a prenatal questionnaire administered to the mothers during the early third trimester as well as by analysis of maternal urinary pentachlorophenol levels and maternal metabolites of chlorpyrifos and pyrethroids. Neither the questionnaire data nor the pesticide metabolite levels were associated with any of the fetal growth indices or gestational age. However, when the level of maternal PON1 activity was taken into account, maternal levels of chlorpyrifos above the limit of detection coupled with low maternal PON1 activity were associated with a significant but small reduction in head circumference. In addition, maternal PON1 levels alone, but not PON1 genetic polymorphisms, were associated with reduced head size. Because small head size has been found to be predictive of subsequent cognitive ability, these data suggest that chlorpyrifos may have a detrimental effect on fetal neurodevelopment among mothers who exhibit low PON1 activity. FULL TEXT


Thomas et al., 2010b

Thomas, K. W., Dosemeci, M., Coble, J. B., Hoppin, J. A., Sheldon, L. S., Chapa, G., Croghan, C. W., Jones, P. A., Knott, C. E., Lynch, C. F., Sandler, D. P., Blair, A. E., & Alavanja, M. C.; “Assessment of a pesticide exposure intensity algorithm in the agricultural health study;” Journal of Exposure Analysis and Environmental Epidemiology, 2010, 20(6), 559-569; DOI: 10.1038/jes.2009.54.

ABSTRACT:

The accuracy of the exposure assessment is a critical factor in epidemiological investigations of pesticide exposures and health in agricultural populations. However, few studies have been conducted to evaluate questionnaire-based exposure metrics. The Agricultural Health Study (AHS) is a prospective cohort study of pesticide applicators who provided detailed questionnaire information on their use of specific pesticides. A field study was conducted for a subset of the applicators enrolled in the AHS to assess a pesticide exposure algorithm through comparison of algorithm intensity scores with measured exposures. Pre- and post-application urinary biomarker measurements were made for 2,4-D (n=69) and chlorpyrifos (n=17) applicators. Dermal patch, hand wipe, and personal air samples were also collected. Intensity scores were calculated using information from technician observations and an interviewer-administered questionnaire. Correlations between observer and questionnaire intensity scores were high (Spearman’s r=0.92 and 0.84 for 2,4-D and chlorpyrifos, respectively). Intensity scores from questionnaires for individual applications were significantly correlated with post-application urinary concentrations for both 2,4-D (r=0.42, P<0.001) and chlorpyrifos (r=0.53, P=0.035) applicators. Significant correlations were also found between intensity scores and estimated hand loading, estimated body loading, and air concentrations for 2,4-D applicators (r-values 0.28-0.50, P-values<0.025). Correlations between intensity scores and dermal and air measures were generally lower for chlorpyrifos applicators using granular products. A linear regression model indicated that the algorithm factors for individual applications explained 24% of the variability in post-application urinary 2,4-D concentration, which increased to 60% when the pre-application urine concentration was included. The results of the measurements support the use of the algorithm for estimating questionnaire-based exposure intensities in the AHS for liquid pesticide products. Refinement of the algorithm may be possible using the results from this and other measurement studies. FULL TEXT