skip to Main Content

Bibliography Tag: crop science

Cessna et al., 1994

Cessna, A. J., Darwent, A. L., Kirkland, K. J., Townley-Smith, L., Harker, K. N., & Lefkovitch, L. P.; “Residues of glyphosate and its metabolite AMPA in wheat seed and foliage following preharvest applications;” Canadian Journal of Plant Science, 1994, 74(3), 653-661; DOI: 10.4141/cjps94-117.

ABSTRACT:

In a 2-yr study at four locations in western Canada, residues of glyphosate and its major metabolite aminomethyl-phosphonic acid (AMPA) were measured in the seed and foliage of wheat (Triticum aestivum L.) following preharvest applications at rates of 0.45, 0.9 or 1.7 kg acid equivalent ha−1. Herbicide treatments were applied in early August to mid-September at seed moisture contents ranging from 52 to 12%. Glyphosate and AMPA residues in the seed increased as the rate of application increased, and decreased as the seed moisture content at the time of application decreased. However, when the maximum application rate of 1.7 kg ha−1 was sprayed at seed moisture contents of 40% or less, glyphosate residues in the seed were < 5 mg kg−1, the Maximum Residue Level recently established by Health Canada. Glyphosate and AMPA residues in the straw also increased with increasing application rate, but there was no consistent pattern in residues of either chemical with seed moisture content at the time of application. Physiological maturity of the crop, rainfall washoff, and application rate appeared to play important roles in determining the magnitude of glyphosate and AMPA residues in the seed and straw of wheat. Key words: Glyphosate, AMPA, residues, wheat, seed, preharvest application. FULL TEXT

Cessna et al., 2002

Cessna, A. J., Darwent, A. L., Townley-Smith, L., Harker, K. N., & Kirkland, K.; “Residues of glyphosate and its metabolite AMPA in field pea, barley and flax seed following preharvest applications;” Canadian Journal of Plant Science, 2002, 82(2), 485-489; DOI: 10.4141/p01-094.

ABSTRACT:

Maximum residue levels have been established by Health Canada for seed of several crops treated with preharvest applications of glyphosate, a common practice on the Canadian prairies. Residues of glyphosate and its major metabolite aminomethylphosphonic acid (AMPA) were determined at crop maturity in flax seed at one site in western Canada and in the seed and straw of field pea and barley at another site following preharvest applications of the herbicide. Glyphosate was applied at rates of 0.45, 0.9 and 1.7 kg ha-1 to each crop in early August to mid-September at four stages of crop development. In all crops, mean residues of glyphosate and AMPA increased with increasing application rate of glyphosate and decreased when the herbicide was applied at later stages of crop development. FULL TEXT

Sacala & Roszak, 2019

Sacała, Elżbieta, & Roszak, Michał, “Mitigation of glyphosate-based herbicide toxicity in maize (Zea mays L.) seedlings by ascorbic acid,” Toxicological & Environmental Chemistry, 2019, 100(5-7), 550-559. DOI: 10.1080/02772248.2019.1567731.

ABSTRACT:

The toxicity of glyphosate at 3.6 mg L−1 to maize seedlings raised from un-treated seeds and the effectiveness of seed pretreatment by soaking in 0.25 mmol L−1 ascorbic acid (AsA) solution for mitigation of toxicity were evaluated in hydroponic culture. Glyphosate dramatically reduced the growth of roots and photosynthetic pigments in the leaves but increased protein content in the leaves. Superoxide dismutase activity and AsA concentration in the roots were increased, and guaiacol peroxidase (GPOX) activity was unaffected. Pretreatment with AsA improved the dry mass of the roots and shoots, increased the protein content in roots and leaves, and significantly decreased the activity of GPOX in roots. The positive effect of AsA treatment was not associated with more efficient functioning of the antioxidative system. FULL TEXT

Valle et al., 2018

Valle, A. L., Mello, F. C. C., Alves-Balvedi, R. P., Rodrigues, L. P., & Goulart, L. R., “Glyphosate detection: methods, needs and challenges,” Environmental Chemistry Letters, 2018. DOI: 10.1007/s10311-018-0789-5.

ABSTRACT:

Glyphosate is considered toxicologically harmful and presents potential association with human carcinogenesis and other chronic diseases, including mental and reproductive behaviors. The challenges to analyse and demonstrate its toxicity are likely due to its metal-chelating properties, the interference of organic compounds in the environment, and similarity with its by-products. Whereas there is a link with serious health and environmental problems, there is an absence of public health policies, which is probably due to the difficulties in detecting glyphosate in the environment, further complicated by the undetectable hazard in occupational safety and health. The historical lenient use of glyphosate in transgenic-resistant crops, corroborated by the fact that it is not easily detected, creates the “Glyphosate paradox”, by which it is the most widely used herbicide and one of the most hardly determined. In this review, we revisited all available technologies for detection and quantification of glyphosate, including their drawbacks and advantages, and we further discuss the needs and challenges. Briefly, most of the technologies require high-end equipments and resources in low throughput, and none of them are adequate for real-time field tests, which may explain the lack of studies on occupational health associated with the chemical hazard. The real-time detection is an urgent and highly demanded need to improve public policies. FULL TEXT

Martinez et al., 2018

Martinez, Daisy A, Loening, Ulrich E, & Graham, Margaret C, “Impacts of glyphosate-based herbicides on disease resistance and health of crops: a review,” Environmental Sciences Europe, 2018, 30(1), 2. DOI: 10.1186/s12302-018-0131-7.

ABSTRACT:

Based on experimental data from laboratory and field, numerous authors have raised concern that exposure to glyphosate-based herbicides (GBHs) may pre-dispose crops to damage by microbial pathogens. In this review, we distinguish and evaluate two principal pathways by which GBHs may affect the susceptibility of crops to disease: pathway 1-via disruptions to rhizosphere microbial ecology, and pathway 2-via restriction of nutrients to crops. We conclude that GBHs have the potential to undermine crop health in a number of ways, including: (i) impairment of the innate physiological defences of glyphosate-sensitive (GS) cultivars by interruption of the shikimic acid pathway; (ii) impairment of physiological disease defences has also been shown to occur in some glyphosate-resistant (GR) cultivars, despite their engineered resistance to glyphosate’s primary mode of action; (iii) interference with rhizosphere microbial ecology (in particular, GBHs have the potential to enhance the population and/or virulence of some phytopathogenic microbial species in the crop rhizosphere); and finally, (iv) the as yet incompletely elucidated reduction in the uptake and utilisation of nutrient metals by crops. Future progress will best be achieved when growers, regulators and industry collaborate to develop products, practices and policies that minimise the use of herbicides as far as possible and maximise their effectiveness when used, while facilitating optimised food production and security. FULL TEXT

Koo et al., 2018

Koo, Dal-Hoe, Molin, William T, Saski, Christopher A, Jiang, Jiming, Putta, Karthik, Jugulam, Mithila, Friebe, Bernd, & Gill, Bikram S, “Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri,” Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(13), 3332-3337. DOI: 10.1073/pnas.1719354115.

ABSTRACT:

Gene amplification has been observed in many bacteria and eukaryotes as a response to various selective pressures, such as antibiotics, cytotoxic drugs, pesticides, herbicides, and other stressful environmental conditions. An increase in gene copy number is often found as extrachromosomal elements that usually contain autonomously replicating extrachromosomal circular DNA molecules (eccDNAs). Amaranthus palmeri, a crop weed, can develop herbicide resistance to glyphosate [N-(phosphonomethyl) glycine] by amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, the molecular target of glyphosate. However, biological questions regarding the source of the amplified EPSPS, the nature of the amplified DNA structures, and mechanisms responsible for maintaining this gene amplification in cells and their inheritance remain unknown. Here, we report that amplified EPSPS copies in glyphosate-resistant (GR) A. palmeri are present in the form of eccDNAs with various conformations. The eccDNAs are transmitted during cell division in mitosis and meiosis to the soma and germ cells and the progeny by an as yet unknown mechanism of tethering to mitotic and meiotic chromosomes. We propose that eccDNAs are one of the components of McClintock’s postulated innate systems [McClintock B (1978) Stadler Genetics Symposium] that can rapidly produce soma variation, amplify EPSPS genes in the sporophyte that are transmitted to germ cells, and modulate rapid glyphosate resistance through genome plasticity and adaptive evolution. FULL TEXT

Hmielowski, 2019

Hmielowski, Tracy, “Glyphosate and Phosphate Interactions in soils,” CSA News, 2019, 64(1), DOI: 10.2134/csa2019.64.0103.

SUMMARY:

• Phosphate and glyphosate interact “competitively” when both are present in the soil.

• The application of inorganic P fertilizers after glyphosate has been applied was shown to mobilize glyphosate.

• Management strategies should consider the potential for glyphosate mobilization to reduce impacts on crops and glyphosate runoff to nearby water sources.

With both phosphorus and glyphosate being applied to agricultural fields across the globe, the chemicals are commonly present together. Phosphorus is applied as inorganic forms of P (PO₄³¯) and taken up through the plant roots. Glyphosate is absorbed through foliage, and while it readily adsorbs to soil, it has been found to degrade rapidly. The two chemicals have a competitive interaction, given the similarity between the PO₄³¯and the phosphonomethyl function group of glyphosate. This means that inorganic P fertilizers can potentially displace glyphosate, and vice versa, on the surface of soil particles. FULL TEXT

 

Hicks et al., 2018

Hicks, Helen L., Comont, David, Coutts, Shaun R., Crook, Laura, Hull, Richard, Norris, Ken, Neve, Paul, Childs, Dylan Z., & Freckleton, Robert P., “The factors driving evolved herbicide resistance at a national scale,” Nature Ecology & Evolution, 2018, 2(3), 529-536. DOI: 10.1038/s41559-018-0470-1.

ABSTRACT:

Repeated use of xenobiotic chemicals has selected for the rapid evolution of resistance, threatening health and food security at a global scale. Strategies for preventing the evolution of resistance include cycling and mixtures of chemicals and diversification of management. We currently lack large-scale studies that evaluate the efficacy of these different strategies for minimizing the evolution of resistance. Here we use a national-scale data set of occurrence of the weed Alopecurus myosuroides (black-grass) in the United Kingdom to address this. Weed densities are correlated with assays of evolved resistance, supporting the hypothesis that resistance is driving weed abundance at a national scale. Resistance was correlated with the frequency of historical herbicide applications, suggesting that evolution of resistance is primarily driven by intensity of exposure to herbicides, but was unrelated directly to other cultural techniques. We find that populations resistant to one herbicide are likely to show resistance to multiple herbicide classes. Finally, we show that the economic costs of evolved resistance are considerable: loss of control through resistance can double the economic costs of weeds. This research highlights the importance of managing threats to food production and healthcare systems using an evolutionarily informed approach in a proactive not reactive manner.

Harre et al., 2017

Harre, Nick T., Nie, Haozhen, Robertson, Renae R., Johnson, William G., Weller, Stephen C., & Young, Bryan G., “Distribution of Herbicide-Resistant Giant Ragweed (Ambrosia trifida) in Indiana and Characterization of Distinct Glyphosate-Resistant Biotypes,” Weed Science, 2017, 65(06), 699-709. DOI: 10.1017/wsc.2017.56.

ABSTRACT:

Giant ragweed is a highly competitive weed that continually threatens crop production systems due to evolved resistance to acetolactate synthase–inhibiting herbicides (ALS-R) and glyphosate (GR). Two biotypes of GR giant ragweed exist and are differentiated by their response to glyphosate, termed here as rapid response (RR) and non–rapid response (NRR). A comparison of data from surveys of Indiana crop fields done in 2006 and 2014 showed that GR giant ragweed has spread from 15% to 39% of Indiana counties and the NRR biotype is the most prevalent. A TaqMan ® single-nucleotide polymorphism genotyping assay was developed to identify ALS-R populations and revealed 47% of GR populations to be ALS-R as well. The magnitude of glyphosate resistance for NRR populations was 4.6 and 5.9 based on GR 50 and LD 50 estimates, respectively. For RR populations, these values were 7.8 to 9.2 for GR 50 estimates and 19.3 to 22.3 for LD 50 estimates. A novel use of the Imaging-PAM fluorometer was developed to discriminate RR plants by assessing photosystem II quantum yield across the entire leaf surface. H 2 O 2 generation in leaves of glyphosate-treated plants was also measured by 3,3′-diaminobenzidine staining and quantified using imagery analysis software. Results show photo-oxidative stress of mature leaves is far greater and occurs more rapidly following glyphosate treatment in RR plants compared with NRR and glyphosate-susceptible plants and is positively associated with glyphosate dose. These results suggest that under continued glyphosate selection pressure, the RR biotype may surpass the NRR biotype as the predominant form of GR giant ragweed in Indiana due to a higher level of glyphosate resistance. Moreover, the differential photo-oxidative stress patterns in response to glyphosate provide evidence of different mechanisms of resistance present in RR and NRR biotypes.

Green, 2018

Green, J. M., “The rise and future of glyphosate and glyphosate-resistant crops,” Pest Management Science, 2018, 74(5), 1035-1039. DOI: 10.1002/ps.4462.

ABSTRACT:

Glyphosate and glyphosate-resistant crops had a revolutionary impact on weed management practices, but the epidemic of glyphosate-resistant (GR) weeds is rapidly decreasing the value of these technologies. In areas that fully adopted glyphosate and GR crops, GR weeds evolved and glyphosate and glyphosate traits now must be combined with other technologies. The chemical company solution is to combine glyphosate with other chemicals, and the seed company solution is to combine glyphosate resistance with other traits. Unfortunately, companies have not discovered a new commercial herbicide mode-of-action for over 30 years and have already developed or are developing traits for all existing herbicide types with high utility. Glyphosate mixtures and glyphosate trait combinations will be the mainstays of weed management for many growers, but are not going to be enough to keep up with the capacity of weeds to evolve resistance. Glufosinate, auxin, HPPD-inhibiting and other herbicide traits, even when combined with glyphosate resistance, are incremental and temporary solutions. Herbicide and seed businesses are not going to be able to support what critics call the chemical and transgenic treadmills for much longer. The long time without the discovery of a new herbicide mode-of-action and the epidemic of resistant weeds is forcing many growers to spend much more to manage weeds and creating a worst of times, best of times predicament for the crop protection and seed industry. (c) 2016 Society of Chemical Industry.  FULL TEXT

Back To Top